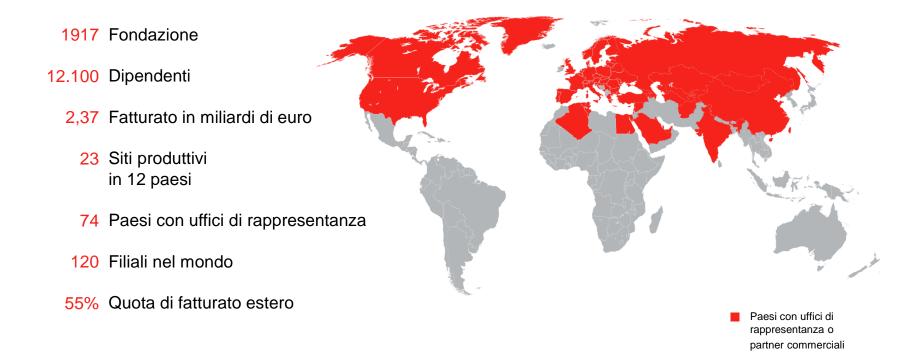


Ordine degli Ingegneri di Prato

Soluzioni efficienti per edifici a basso consumo rispettosi dell'ambiente. Criticità derivate dalle caratteristiche dell'acqua di impianto (Prossima UNI 8065/89 aggiornata)


Rel. Mauro Braga Alessandro Zaggia

IL GRUPPO VIESSMANN

Sede: Allendorf (Eder), Germania

Multinazionale a conduzione familiare

VIESSMANN ITALIA

Sede: Pescantina (VR)

- 1992 Fondazione
- 250 Dipendenti
- 161 Fatturato in milioni di euro
 - 4 Regioni commerciali
- 13 Filiali
- 8 Sedi operative
- 7500 Installatori
- 2200 Progettisti termotecnici
- 340 Centri assistenza

PROGRAMMA COMPLETO

Prodotti e sistemi per ogni esigenza

0il

Gas

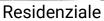
Solar

Biomass

Geothermal

Air

Electricity



PROGRAMMA COMPLETO

Prodotti e soluzioni per ogni esigenza

Industriale

Fotovoltaico

TEMI DELL'INCONTRO

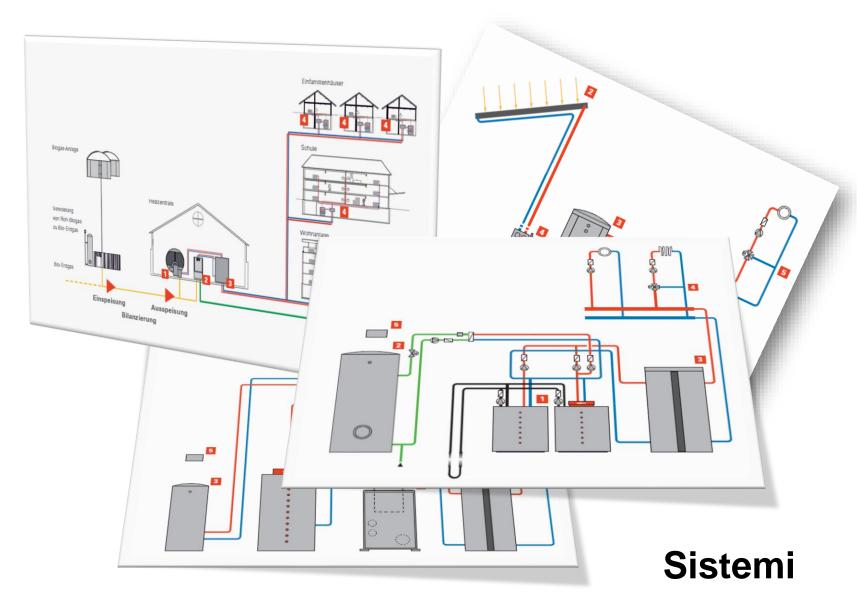
Soluzioni efficienti per edifici a basso consumo rispettosi dell'ambiente.
 (Creare soluzioni sostenibili per le generazioni future)

p.i. Mauro Braga - Accademia Viessmann

 Criticità derivate dalle caratteristiche dell'acqua di impianto (Prossima UNI 8065/89 aggiornata)

Ing. Alessandro Zaggia – Consulente

ENERGIA PRIMARIA E AMBIENTE


Riduzione consumo di energia primaria per ridurre lo sfruttamento del pianeta

Emissioni inquinanti e cambiamenti climatici

SOLUZIONI INTEGRATE E CON FONTI RINNOVABILI

CREARE SOLUZIONI SOSTENIBILI PER LE GENERAZIONI FUTURE

Linea guida ISH – Francoforte 11-15 marzo 2019

CREARE SPAZI DI VITA PER LE GENERAZIONI A VENIRE Visione

- I prodotti devono creare soluzioni efficienti e sostenibili per le future generazioni
- Devono essere interconnessi e dialogare tra loro per permettere di ottenere soluzioni più rispettose dell'ambiente della singola tecnologia
- Devono fornire la possibilità di servizi e interattività per un maggior comfort ambientale ed una conduzione attiva e oculata dell'utente finale
- ❖ La semplicità di installazione, utilizzo e manutenzione sono la chiave per raggiungere e mantenere nel tempo le performance previste

CHI "GUIDA" IL SISTEMA?

SOLUZIONI EFFICIENTI PER EDIFICI A BASSO CONSUMO RISPETTOSI DELL'AMBIENTE.

Riepilogo Quadro incentivante a sostegno dell'efficienza energetica e fonti rinnovabili: Conto Termico 2.0, detrazioni fiscali Irpef e Ires
Impiego della ventilazione meccanica controllata con recupero energetico
Corretta scelta delle pompe di calore nei nuovi edifici a basso consumo e nelle riqualificazioni anche con sistemi ibridi
Ottimizzazione eventuali integrazioni con collettori solari termici e fotovoltaici.
Cogenerazione a livello civile: Contesto di applicazione idoneo. Principi base e parametri di riferimento cogeneratori Cenni sul dimensionamento e scelta dell'apparecchio.

Relatore: Mauro Braga - Accademia Viessmann

Soluzioni efficienti per edifici a basso consumo rispettosi dell'ambiente.

Riepilogo Quadro incentivante a sostegno dell'efficienza energetica e fonti rinnovabili: Conto Termico 2.0, detrazioni fiscali Irpef e Ires
Impiego della ventilazione meccanica controllata con recupero energetico
Corretta scelta delle pompe di calore nei nuovi edifici a basso consumo e nelle riqualificazioni anche con sistemi ibridi
Ottimizzazione eventuali integrazioni con collettori solari termici e fotovoltaici.
Cogenerazione a livello civile: Contesto di applicazione idoneo. Principi base e parametri di riferimento cogeneratori Cenni sul dimensionamento e scelta dell'apparecchio.

Relatore: Mauro Braga - Accademia Viessmann

LEGISLAZIONE DI RIFERIMENTO NELLE NUOVE COSTRUZIONI

Vincoli

Obblighi quote percentuali di **copertura da fonti rinnovabili** per soddisfare i fabbisogni termici ed elettrici, **Dlgs 3 marzo 2011 n°28 (RES)**, al quale fa riferimento il **DM 26 giugno 2015**

Fabbisogno termico: climatizzazione e ACS prodotto da fonti rinnovabili

50%

Energia prevista per la produzione di ACS

Somma dell'energia prevista per la produzione di ACS, il riscaldamento e il raffrescamento da gennaio 2018

Fabbisogno elettrico: prodotto da fonti rinnovabili

20W/m²

Potenza elettrica impiegata per ogni m² di superficie occupata in pianta dall'edificio (20W/m² dal 2017, 15,4W/m² prima del 2017)

DECRETO MINISTERIALE 28 DICEMBRE 2012

Incentivi

Conto Termico

Incentivazione fonti rinnovabili ed efficientamento energetico impianti:

Conto Termico 2.0 (DM 16 febbraio 2016 ed in vigore dal 31 maggio 2016)

- Sostituzione impianti climatizzazione con impianti a pompa di calore fino a 2 MW (aggiornato)
- Sostituzione impianti climatizzazione con **caldaie e apparechi a biomassa fino a 2 MW** (legna, cippato, pellet, briquettes, ..)
- Installazione collettori solari termici fino a 2500 m² (aggiornato)
- Sostituzione scaldacqua elettrici con boiler a pompa di calore
- Sostituzione impianti climatizzazione con nuovi sistemi ibridi a pompa di calore factory made e rapporto di potenza PDC/Caldaia < 0,5

Invariato rispetto al 2017:

Privati: generatori a biomassa, solare termico, pompe di calore e sistemi ibridi made in factory

Amministrazione pubblica : come privati + caldaia a condensazione e schermature solari

LEGGE 30 DICEMBRE 2018, N. 145

O LEGGE DI STABILITÀ 2019

Aggiornamento del 2019 su incentivazioni o detrazioni fiscali per riqualificazioni

Detrazioni Irpef

36% Bonus sistemazione aree a verde

Ristrutturazione edilizia, bonus mobili ed elettrodomestici Ecobonus per caldaia a condensazione classe A / caldaia a biomassa

Riqualificazione energetica globale, caldaia a condensazione classe A+ con sistemi di regolazione Evoluti, Impianti solari termici, pompe di calore e sistemi ibridi, Microcogeneratori * (se con risparmio di energia primaria > 20%), parti comuni condomini (impianto centralizzato)

Riqualificazione energetica permette una detrazione pari al 70% per parti comuni condominiali che interessano l'involucro dell'edificio con una incidenza superiore al 25% della superficie disperdente lorda. Pari al 75% se si consegue anche un miglioramento energetico almeno pari alla qualità media di cui al decreto 26 giugno 2015 (requisisti minimi di efficienza degli edifici). Valido fino al 2021.

«Sismabonus» Interventi combinati per riduzione **rischio sismico ed efficienza energetica negli edifici** ubicati in zone sismiche in classe 1, 2 o 3. **Valido fino al 2021**

80% 85%

^{75%}

Soluzioni efficienti per edifici a basso consumo rispettosi dell'ambiente.

Riepilogo Quadro incentivante a sostegno dell'efficienza energetica e fonti rinnovabili: Conto Termico 2.0, detrazioni fiscali Irpef e Ires
Impiego della ventilazione meccanica controllata con recupero energetico
Corretta scelta delle pompe di calore nei nuovi edifici a basso consumo e nelle riqualificazioni anche con sistemi ibridi
Ottimizzazione eventuali integrazioni con collettori solari termici e fotovoltaici.
Cogenerazione a livello civile: Contesto di applicazione idoneo. Principi base e parametri di riferimento cogeneratori Cenni sul dimensionamento e scelta dell'apparecchio.

Relatore: Mauro Braga - Accademia Viessmann

EFFICIENZA ENERGETICA O SALUBRITÀ AMBIENTALE?

Ricambio aria NATURALE

VENTILAZIONE MECCANICA

Edifici di una volta...

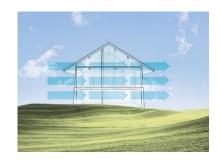
Ricambio aria attraverso gli spifferi: più di 4 ricambi/h

→ Rimozione naturale di umidità e inquinanti

Edifici di oggi (nuovi o ristrutturati):

Ricambio aria attraverso gli spifferi: obiettivo = 0 ricambi/h

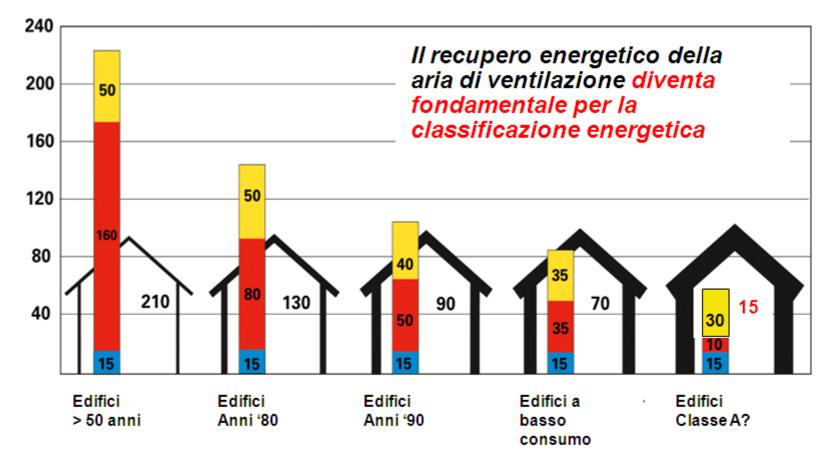
- → Ricambio aria naturale ridotto al minimo
- → Rimozione naturale di umidità e inquinanti non garantita



VENTILAZIONE MECCANICA CONTROLLATA

Lusso o necessità?

- I sistemi di ventilazione meccanica controllata con recupero di calore sono sempre più presenti nel settore residenziale
- La ventilazione meccanica controllata garantisce
 - COMFORT, con aumento della qualità dell'aria indoor
 - IGIENE, abbassando la concentrazione di inquinanti nell'aria ed evitando la formazione di muffe
 - TUTELA DELL'EDIFICIO, evitando i danni che possono derivare dalla formazione di condense e muffe
 - RISPARMIO, grazie al recupero termico, consentendo di migliorare la classe energetica dell'abitazione
- Le diverse tipologie di unità di ventilazione e un sistema di distribuzione aria modulare permette di affrontare tutti i campi di applicazione
- L'accurata progettazione e realizzazione del sistema assicurano un funzionamento sicuro, affidabile ed economico



VIESMANN

PERDITE ENERGETICHE PER VENTILAZIONE DEGLI AMBIENTI

Quota recupero del calore

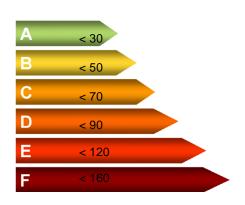
Fabbisogno di calore in kWh/(m²·a)

- Fabbisogno di calore per ventilazione ambienti (perdite di calore per ricambio aria)
- Fabbisogno di calore di trasmissione (perdite di calore a attraverso il rivestimento edificio)
- Fabbisogno di calore per produzione acqua calda sanitaria

LA VENTILAZIONE MECCANICA CONTROLLATA

Salubrità e classe energetica

Quantificazione delle dispersioni per Ventilazione:


Esempio: abitazione ca.100m², classe C (fabbisogno energia 55 kWh/m²anno)

$$Q_{v} = V[m^{3}] \cdot n[\frac{1}{h}] \cdot C_{aria}[\frac{Wh}{m^{3}K}] \cdot GG[\frac{K \cdot giorno}{anno}] \cdot 24[\frac{h}{giorno}]$$

$$Q_v = 300 \cdot 0.5 \cdot 0.33 \cdot 2400 \cdot 24 = 2851.2 \, \text{kWh/anno}$$

$$Q_v/Sup = 2851,2/100 \neq 28,51 \frac{kWh}{m^2 anno}$$

Le dispersioni di calore necessarie al ricambio dell'aria rappresentano una quota consistente del fabbisogno energetico dell'edificio, soprattutto nel periodo invernale in cui è in funzione il riscaldamento.

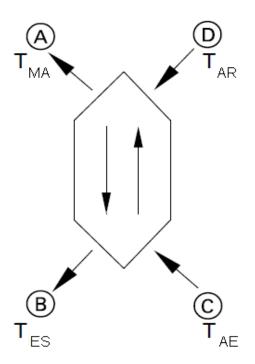
RECUPERO TERMICO PASSIVO

Recupero termico fino al 90%

Il recupero del calore avviene grazie allo scambiatore aria-aria a flussi incrociati in controcorrente, **con efficienza fino al 90%.**

Il preriscaldamento dell'aria esterna avviene mediante il recupero del calore dell'aria di scarico.

Con un esempio numerico possiamo apprezzare il significato di efficienza di recupero η_{WRG} pari al 90%:


$$\eta_{WRG} = ((T_{MA} - T_{AE}) / (T_{AR} - T_{AE})) \cdot 100 [\%]$$

ne consegue che:

$$T_{MA} = \eta_{WRG} \cdot (T_{AR} - T_{AE}) + T_{AE}$$

Esempio:

$$T_{AR} = +21 \,^{\circ}C$$

 $T_{AF} = +5 \,^{\circ}C$

$$T_{MA} = 0.9 \cdot (+21 - (+5)) + (+5) = 19.4 \, ^{\circ}\text{C}$$

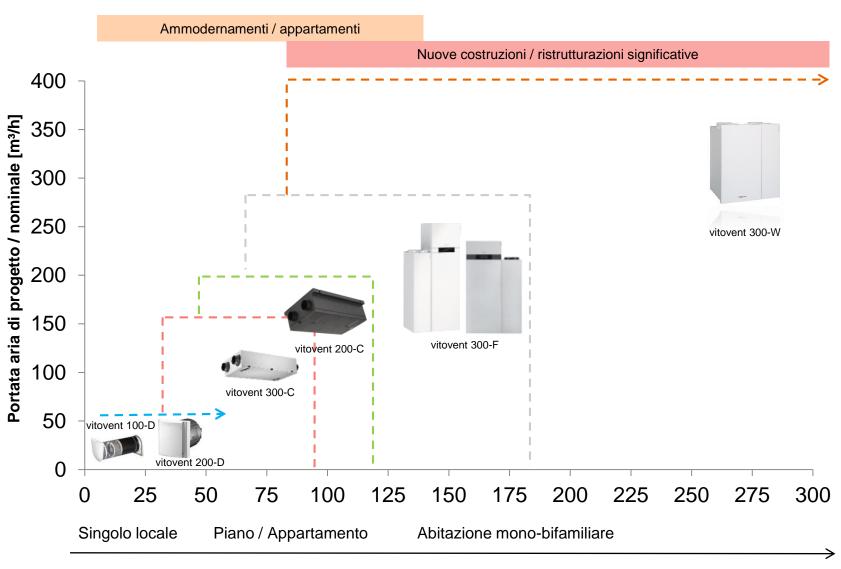
- \bigcirc Mandata aria (T_{MA})
- B Aria da espellere (T_{ES})
- © Aria esterna (T_{AE})
- D Aria di ripresa (T_{AR})

FILTRAZIONE DELL'ARIA DI VENTILAZIONE

Classificazione secondo UNI EN 779

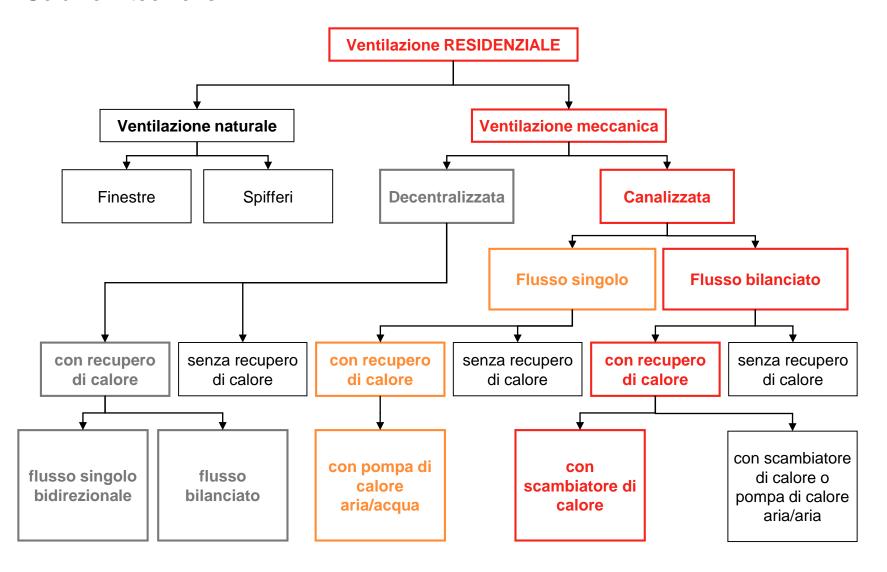
L'aria esterna di rinnovo viene **FILTRATA** prima di essere immessa negli ambienti:

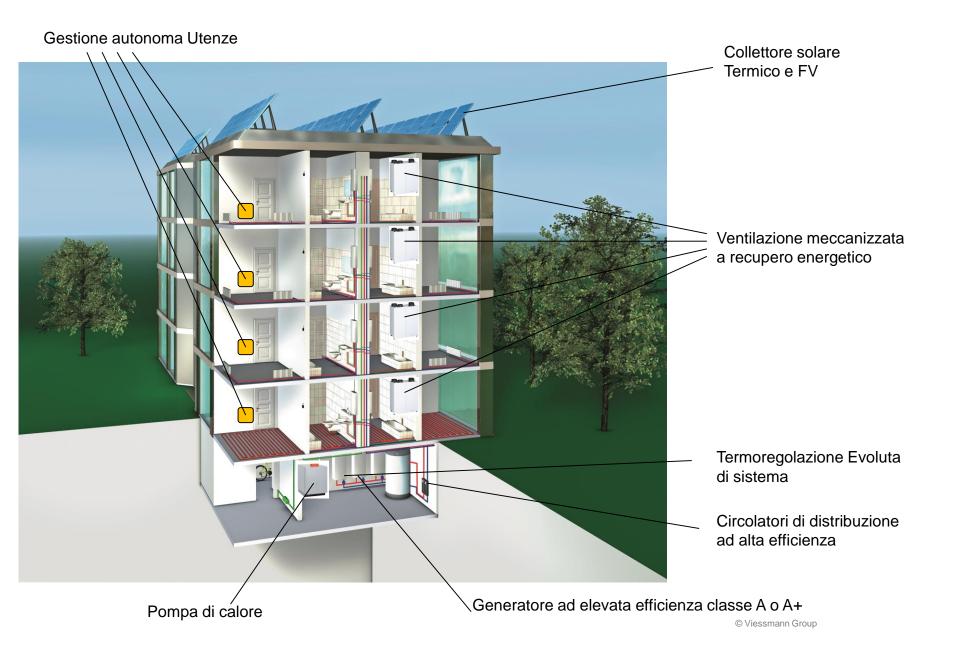
- filtri di classe F7 sull'aria esterna di rinnovo per purificarla da polveri e allergeni e sull'aria di ripresa
- filtri di classe G4 sulla ripresa aria ambiente per preservare lo scambiatore dal rischio di sporcamento


Tutti i filtri sono removibili

Di serie normalmente filtri tipo G4 mentre alcuni modelli possono prevedere versioni con filtri di classe F7 (antipolline) di serie o eventualmente come optional

PROGRAMMA VENTILAZIONE CONTROLLATA


Ventilazione centrale o localizzata?


VENTILAZIONE MECCANICA CONTROLLATA

Soluzioni tecniche

L'EDIFICIO EFFICIENTE E NATURALE

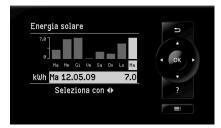
REGOLAZIONE DIGITALE DEL SISTEMA

Ottimizzazione e razionalizzazione sinergica delle funzioni del sistema

REGOLAZIONE DIGITALE DEL SISTEMA

Ottimizzazione e razionalizzazione sinergica delle funzioni del sistema

Sensore CO₂ / umidità


Per l'adduzione e lo scarico dell'aria in funzione della concentrazione di CO2 o dell'umidità dell'aria

Grafica curve di riscaldamento

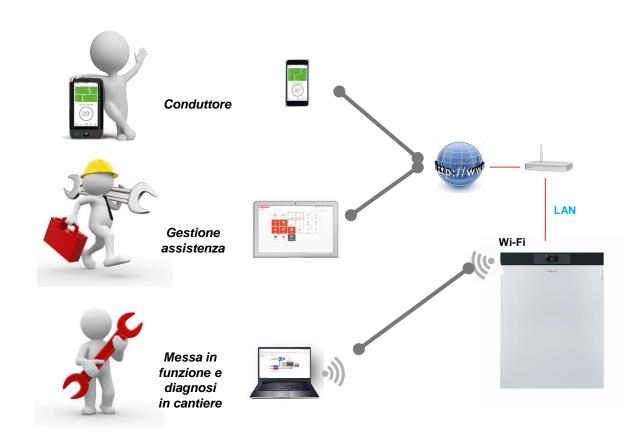
Grafica curve di raffrescamento

Indicatore energia solare assorbita


Multidisciplinarità del sistema

REGOLAZIONE DIGITALE DEL SISTEMA

Ottimizzazione e razionalizzazione sinergica delle funzioni del sistema


- Monitoraggio del generatore e dell'intero sistema sia da locale che da remoto
- Verifica dei parametri principali di funzionamento
- Analisi delle performance e dei consumi del sistema
- Verifica dei metodi di gestione e conduzione del sistema
- Sensibilizzazione del conduttore impianto (utente o responsabile)

SUPERVISIONE E GESTIONE A DISTANZA

Efficienza energetica e servizio efficiente

Conduzione e controllo interattivo del sistema

SOLUZIONI EFFICIENTI PER EDIFICI A BASSO CONSUMO RISPETTOSI DELL'AMBIENTE.

Riepilogo Quadro incentivante a sostegno dell'efficienza energetica e fonti rinnovabili: Conto Termico 2.0, detrazioni fiscali Irpef e Ires
Impiego della ventilazione meccanica controllata con recupero energetico
Corretta scelta delle pompe di calore nei nuovi edifici a basso consumo e nelle riqualificazioni anche con sistemi ibridi
Ottimizzazione eventuali integrazioni con collettori solari termici e fotovoltaici.
Cogenerazione a livello civile: Contesto di applicazione idoneo. Principi base e parametri di riferimento cogeneratori Cenni sul dimensionamento e scelta dell'apparecchio.

Relatore: Mauro Braga - Accademia Viessmann

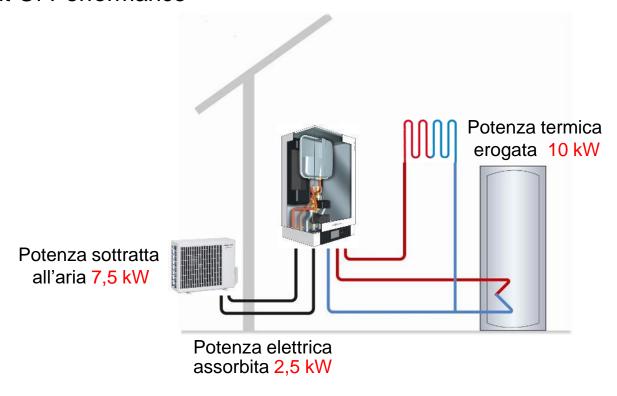
PARAMETRI DI RIFERIMENTO

EER

SPF

COP

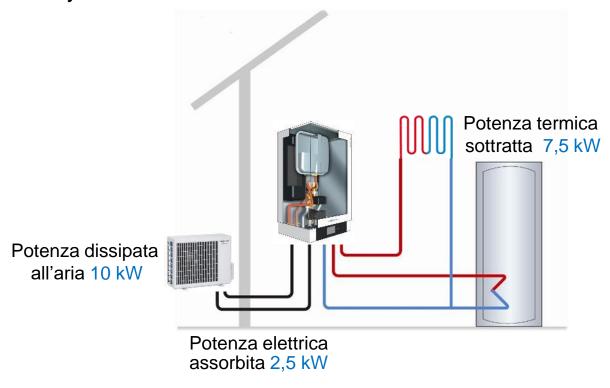
APF


SEER

SCOP

EFFICIENZA - COP

Coefficient Of Performance


$$\frac{\text{COP}}{\text{potenza termica erogata}} = \frac{10 \text{ kW}}{2,5 \text{ kW}} = 4$$

Efficienza dichiarata dal costruttore secondo EN 14511-2

EFFICIENZA - EER

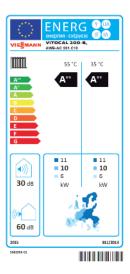
Energy Efficiency Ratio

EER =
$$\frac{\text{potenza frigorifera erogata}}{\text{potenza el. assorbita}} = \frac{7.5 \text{ kW}}{2.5 \text{ kW}} = 3$$

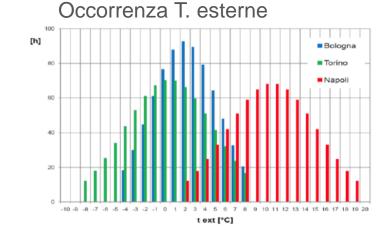
EFFICIENZA STAGIONALE

SPF - Seasonal Performance Factor

 $\frac{\text{SPF}}{\text{SCOP-SEER}} = \frac{\text{apporto energetico stagionale (kWh)}}{\text{consumo energetico stagionale (kWh)}}$

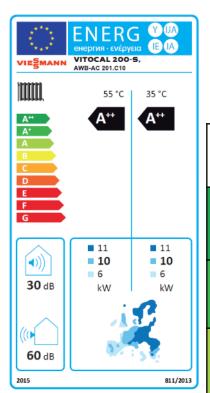

PRODUTTORE

SCOP (η_s) a Strasburgo



PROGETTISTA

Calcolo fabbisogni secondo UNI/TS 11300



EFFICIENZA STAGIONALE

SPF - Seasonal Performance Factor

 $\frac{\text{SPF}}{\text{SCOP-SEER}} = \frac{\text{apporto energetico stagionale (kWh)}}{\text{consumo energetico stagionale (kWh)}}$

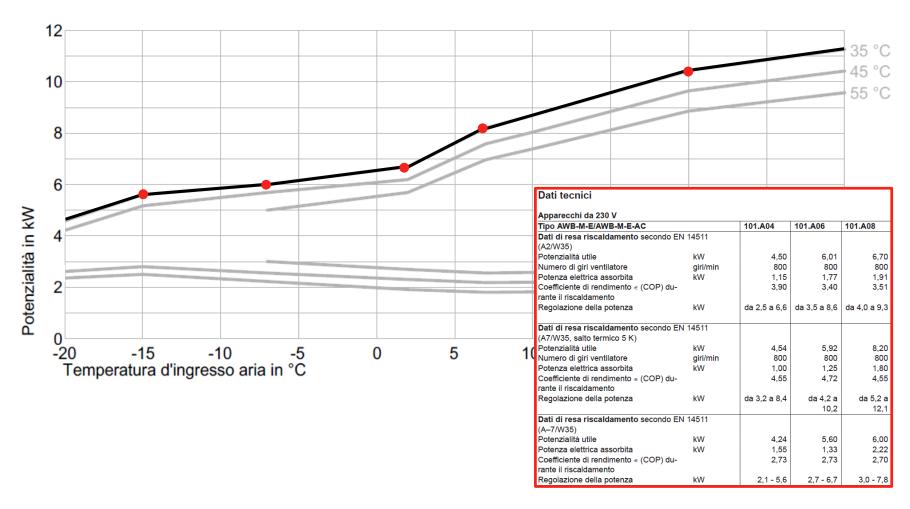
La direttiva ErP introduce il concetto di prestazione stagionale per le pompe di calore. Progettazione ecocompatibile (Reg.813/2013) fino a 400 kW fissa requisiti in termini di prestazioni, rumorosità, informazioni di prodotto. Etichettatura (Reg.811/2013) fino a 70 kW.

 η_s «efficienza energetica stagionale del riscaldamento d'ambiente» Rapporto fra la domanda di riscaldamento d'ambiente per una data stagione di riscaldamento, erogata da un apparecchio di riscaldamento, e il consumo energetico annuo necessario a soddisfare tale domanda, espresso in %

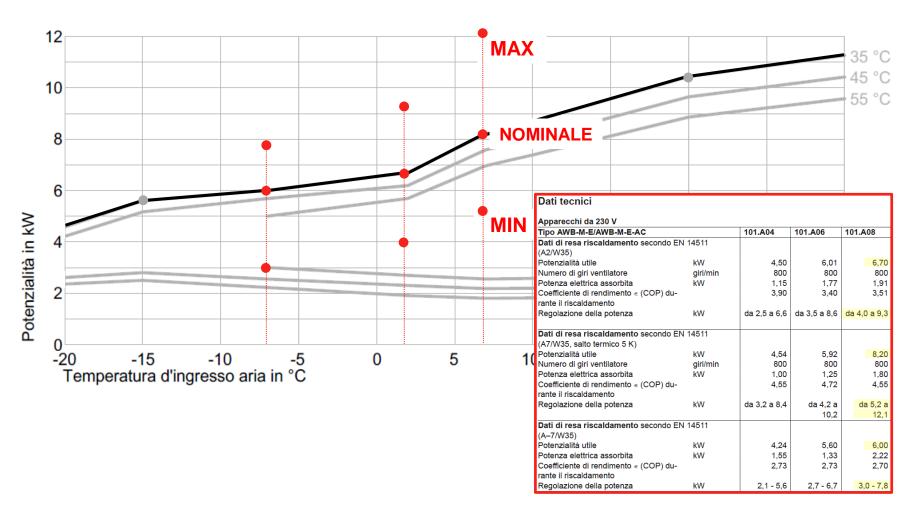
CLASSI DI EFFICIENZA		$\eta_{s,h}$	SCOP aria/acqua	SCOP terra/acqua acqua/acqua	
A+++	MT	≥ 150 %	3,825	3,950	
(dal 2019)	ВТ	≥ 175 %	4,450	4,575	
۸	MT	≥ 125 %	3,200	3,325	
A++	ВТ	≥ 150 %	3,825	3,950	
Δ.	MT	≥ 110 %*	2,825	2,950	
A+	ВТ	≥ 125 %*	3,200	3,325	

Passaggi chiave

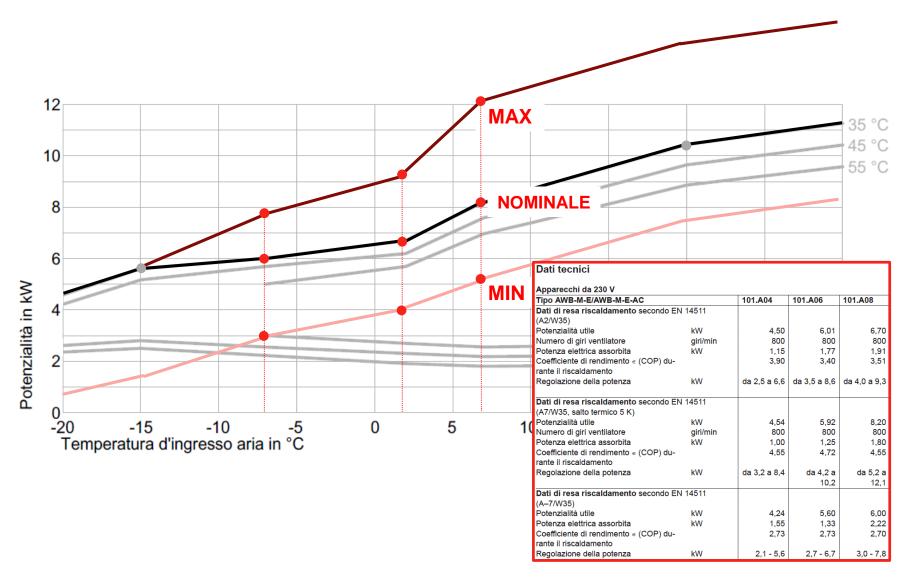
- 26 set 2015
 Classi da A++ a G
- 26 set 2017
 requisiti minimi più stringenti:
 *η_s min 110 % MT; 125% BT
- 26 set 2019
 Classi da A+++ a D

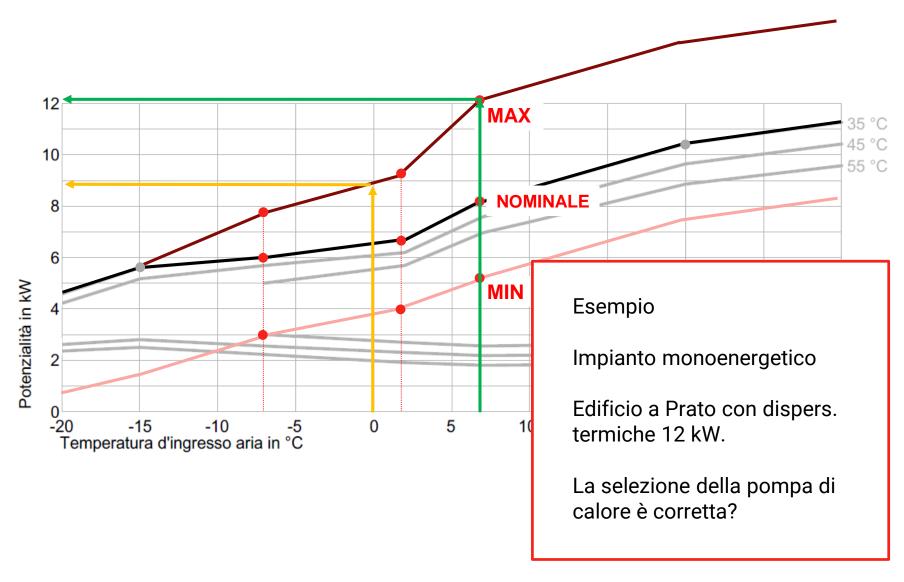

COP - EFFICIENZA

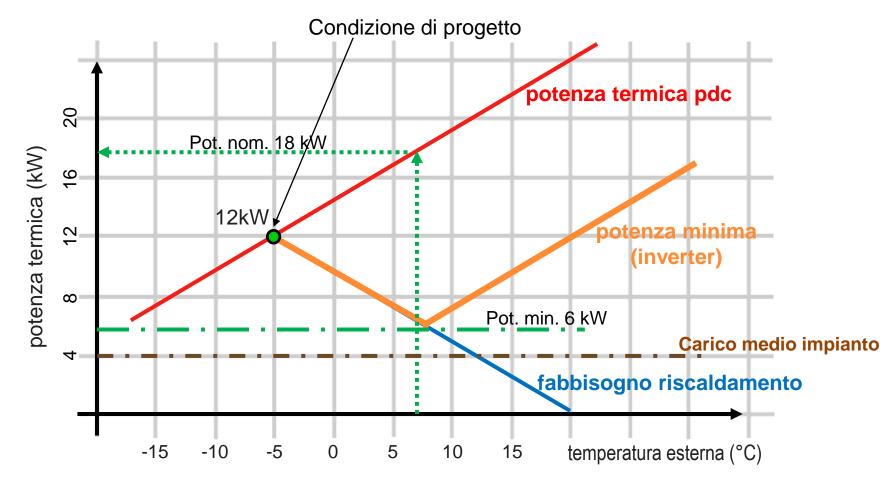
Curve di prestazione


Pompa di calore aria-acqua splittata

Funzionamento	W	°C				3	5			
	Α	°C	-20	-15	-7	2	7	10	20	30
Potenzialità		kW	7,04	8,01	9,57	7,50	10,16	10,51	11,67	12,82
Potenza elettrica assorbita	l	kW	3,09	3,10	3,11	1,76	2,00	1,98	1,90	1,83
Coefficiente di rendimento	∈ (COP)	'	2,28	2,59	3,08	4,27	5,08	5,34	6,20	7,06
	14/	100	1				_			
Funzionamento	W	°C	l .			4	5			
	Α	°C	-20	-15	-7	2	7	10	20	30
Potenzialità		kW	6,22	7,20	8,77	6,85	8,79	9,16	10,40	11,63
Potenza elettrica assorbita	l	kW	3,54	3,56	3,59	2,46	2,48	2,44	2,33	2,21
Coefficiente di rendimento	∈ (COP)	<u> </u>	1,76	2,02	2,44	2,78	3,55	3,78	4,55	5,31
Funzionamento	w	l°C				5	5			
Tunzionamento	A	°C	-20	-15	-7	2	7	10	20	30
Potenzialità		kW		6,31	7,96	6,18	7,64	8,02	9,32	10,61
Potenza elettrica assorbita kW			4,07	4,00	2,90	2,93	2,89	2,76	2,63	
Coefficiente di rendimento	∈ (COP)	'		1,55	1,99	2,13	2,61	2,80	3,43	4,06

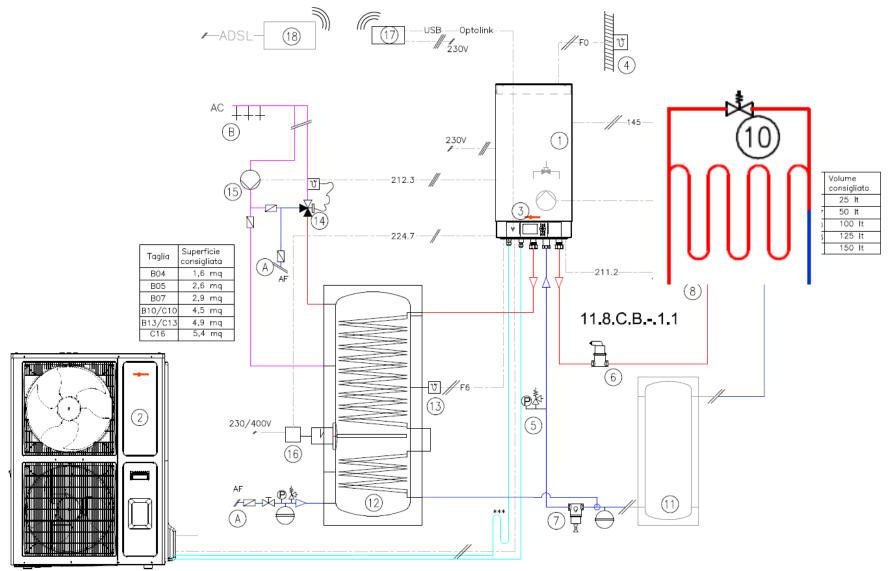






DIMENSIONAMENTO DELLA POMPA DI CALORE

Funzionamento monovalente



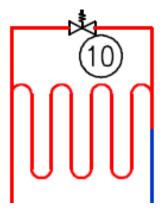
Un adeguato **contenuto di acqua** tecnica è fondamentale per minimizzare gli ON-OFF di macchina e ottenere **comfort** ed una buona **resa** stagionale

VOLUME ACQUA DI IMPIANTO

Inserimento accumulo in serie sul ritorno

CIRCOLAZIONE IDRONICA

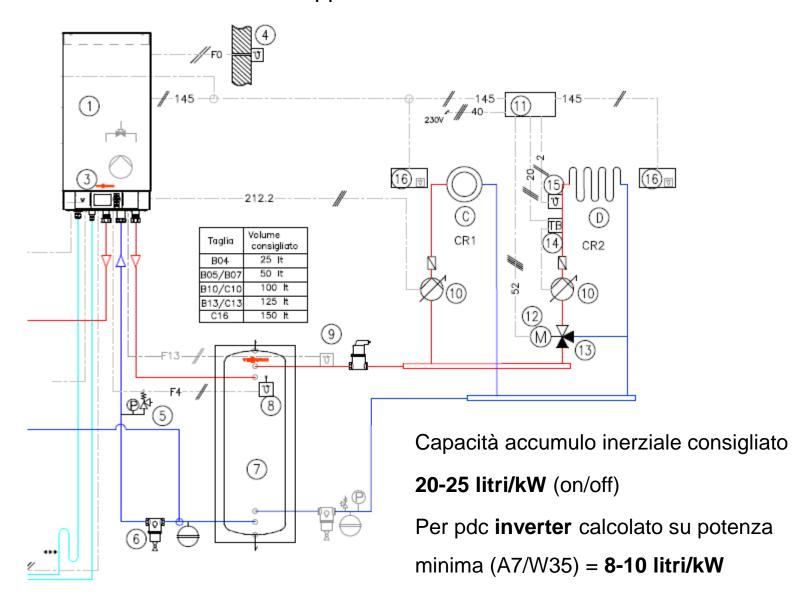
Garantire la portata volumetrica minima


2.2 Dati tecnici

Dati tecnici

Apparecchi da 230 V

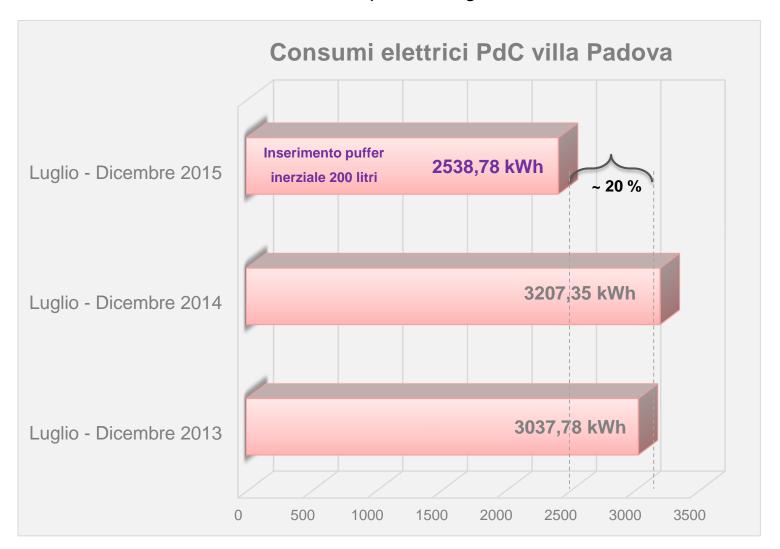
Tipo AWB-M-E/AWB-M-E-AC	201.D04	201.D06	201.D08	201.D10	201.D13	201.D16	
Acqua di riscaldamento (circuito secondario)							
Portata volumetrica minima	l/h	700	700	700	1400	1400	1400
Volume minimo dell'impianto di riscalda- mento, non intercettabile	I	50	50	50	50	50	50
Perdita max. di carico esterna (RHF) con	mbar	705	705	705	500	500	500
portata volumetrica minima	kPa	70,5	70,5	70,5	50	50	50
Temperatura max. di mandata	°C	60	60	60	60	60	60


NB: per lavorare «in diretta» sull'impianto

- verificare le perdite di carico dell'impianto
- volume NON intercettabile, eventualmente accumulo inerziale
- portata volumetrica SEMPRE garantita, eventualmente sovrapressore / bypass

VOLUME ACQUA DI IMPIANTO

Inserimento accumulo come disaccoppiamento idraulico



CASE STUDY

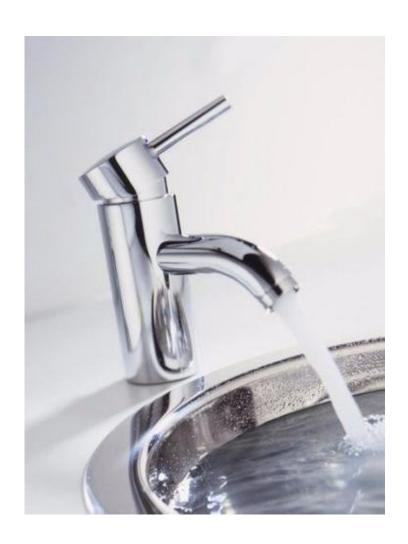
Gli effetti dell'accumulo inerziale

Villa in classe B vicino a Padova, impianto a pavimento a zone e scaldasalviette. Vitocal 242-S 16kW A7/W35. Installazione puffer 1 luglio 2015.

CASE STUDY

Gli effetti dell'accumulo inerziale

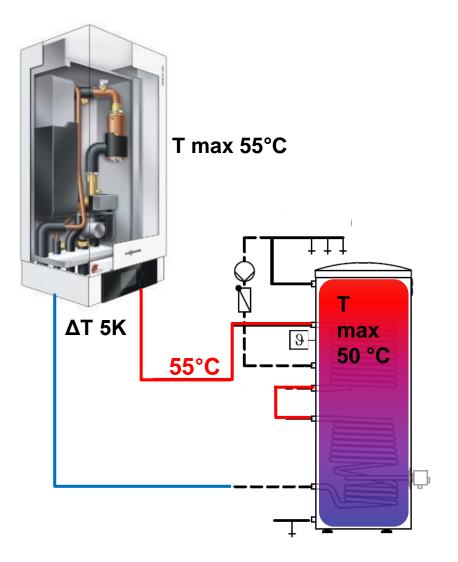
Villa in classe B vicino a Padova, impianto a pavimento a zone e scaldasalviette. Vitocal 242-S 16kW A7/W35. Installazione puffer 1 luglio 2015.


	T° MED MENSILE	T° MED MENSILE	T° MED MENSILE	T° MED MENSILE	T° MED MENSILE
MESE	INVERNO CALCOLO L10/91	INVERNO 2012-2013	INVERNO 2013-2014	INVERNO 2014-2015	INVERNO 2015-2016
OTTOBRE	13,8	13,6	17,0	16,2	14,0
NOVEMBRE	8,2	10,5	10,2	12,0	8,4
DICEMBRE	3,6	2,9	4,5	5,9	3,9


Il miglioramento dell'efficienza **misurato** di quasi il 20% si è verificato nonostante il trimestre invernale con la temperatura esterna media più bassa degli ultimi 3 anni, a conferma dell'importanza dell'adeguato contenuto d'acqua nell'impianto.

SUPERFICI DI SCAMBIO

La produzione di ACS con pompa di calore



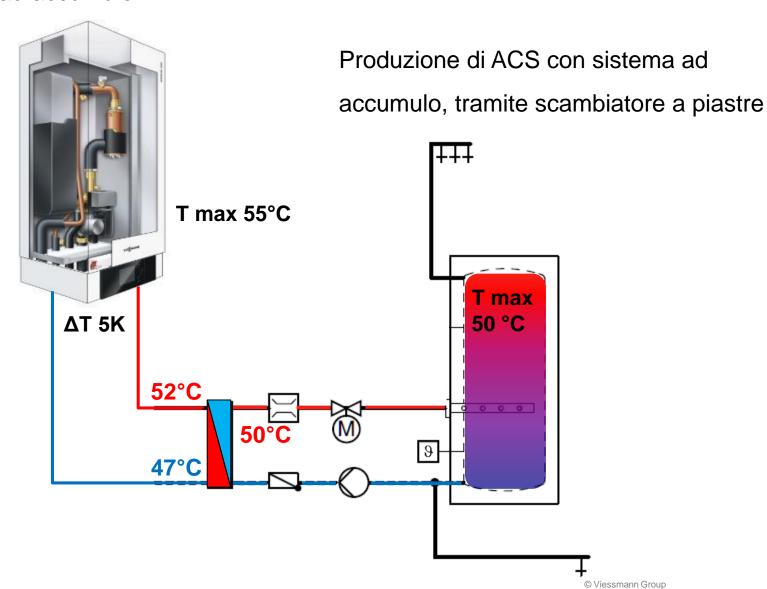
PRODUZIONE DI ACS

Bollitore con serpentino

Produzione di ACS tramite il serpentino del bollitore con superfici maggiorate

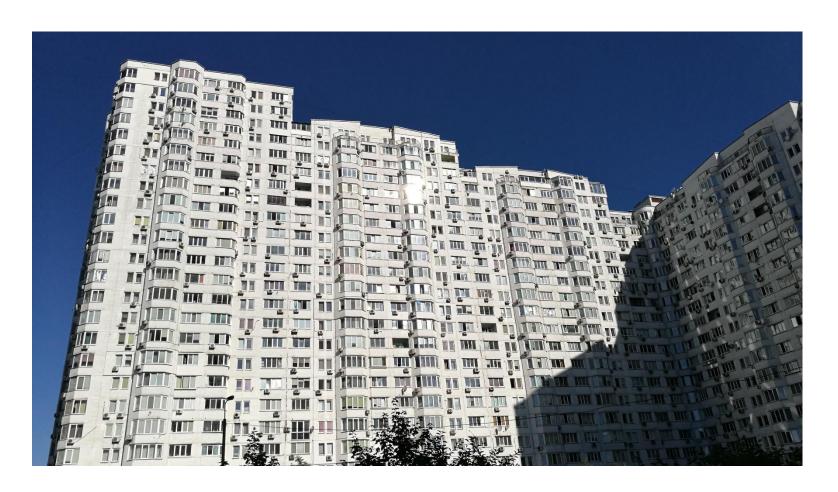
Superficie minima serpentino:

Potenza PdC (kW) x 0,3 m²/kW

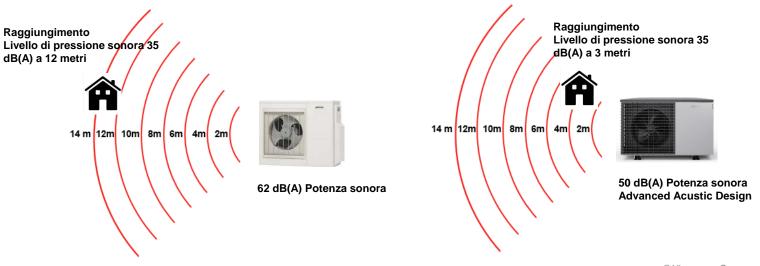

es: 10 kW \rightarrow 3 m²

Nel caso di bollitore bivalente, si possono unire i serpentini in serie per raggiungere le superfici di scambio ottimali.

PRODUZIONE DI ACS

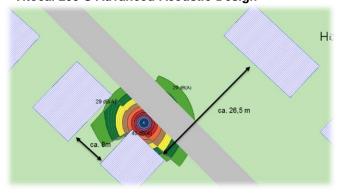

Sistema ad accumulo

EMISSIONI ACUSTICHE ECONFLITTUALITÀ


Riduzione inquinamento acustico

Ruolo del generatore

Sorgente di rumore	Livello sonoro (dB)	Percezione umana
Fruscio di foglie, bisbiglio, ambiente abitativo silenzioso di notte	20-25	Calma, silenzio
Ambiente abitativo silenzioso di notte, biblioteca, ambiente rurale notte	25-35	Califia, Siletizio
Ambiente domestico di giorno, strada tranquilla, conversazione tranquilla	40-50	Possibile deconcentrazione, inizio disturbi del sonno
Conversazione normale, ufficio rumoroso, strada trafficata,ristorante,Tv e radio ad alto volume	60-70	Interferenza nelle conversazioni, fastidio, telefono difficile da usare
Sveglia, asciugacapelli, autostrada	80	Fastidio
Camion nelle vicinanza, macchinari industria e artigianato, passaggio treno,motosega	90	Molto fastidio
Discoteca, carotatrice, concerto rock,autobettoniera,martello pneumatico	100-110	
Sirena, clacson a 1 metro,	120	Dolore
Decollo aereo	130	


ADVANCED ACOUSTIC DESIGN

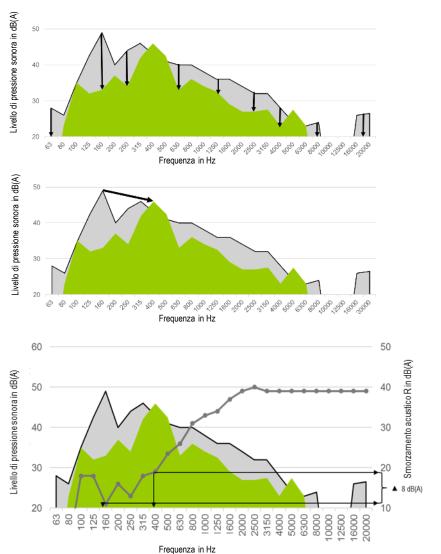
Ottimizzazione delle prestazioni acustiche

PdC tradizionale PdC tradizionale Heli Gale(A) Cal 26,5 m 29 dB(A) 29 dB(A)

Vitocal 200-S Advanced Acoustic Design

Progettazione secondo ADVANCE ACOUSTIC DESIGN

- Progettazione dell'unità esterna per contenere le emissioni sonore
- Riduzione delle vibrazioni con supporti antivibranti e circuito frigorifero installato su piastra oscillante
- Gestione dei ventilatori a velocità differenziate


Risultati conseguiti

- Abbassamento del livello di potenza sonora
- Pressione sonora 35dB (A) a 3m
 in funzionamento notturno
- La più silenziosa della categoria

ADVANCED ACOUSTIC DESIGN

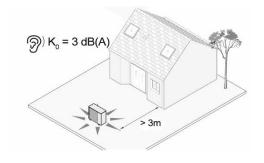
Ottimizzazione delle prestazioni acustiche

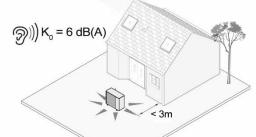
Vitocal 200 (old)

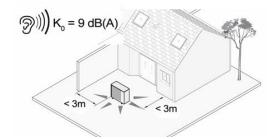
Vitocal 200 (new)

Smorzamento acustico R finestra triplo vetro

- Approccio progettuale alla pdc intesa come sistema massa-molla-smorzatore
- Abbassamento rumore sorgente e analisi delle frequenze proprie di vibrazione
- Utilizzo di materiali ad alto fonoassorbimento
- Picco acustico shiftato a frequenze più «intercettabili» dall'edificio
- Integrazione acustica con gli involucri ed elementi architettonici degli edifici attuali

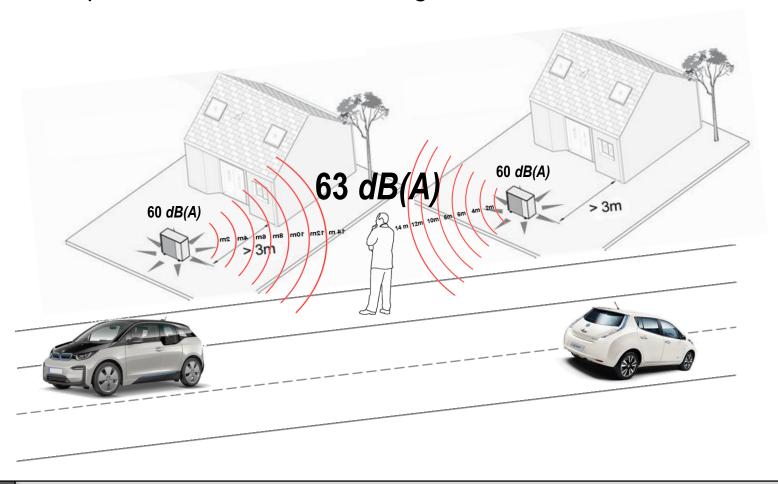



Scelta del posizionamento e ruolo del generatore


Campo aperto (Q=2)

Parete (Q=4)

Angolo (Q=8)



In applicazioni residenziali ad elevata densità, l'indice di direzionalità K_0 è inevitabile. La scelta del posizionamento è spesso vincolata. Determinante quindi la riduzione a monte della sorgente di rumore.

Scelta del posizionamento e ruolo del generatore

Un aumento di "soli" 3 dB(A) in realtà corrisponde al raddoppio dei livelli energetici delle fonti di rumore

Errori da evitare

Errori da evitare

Errori da evitare

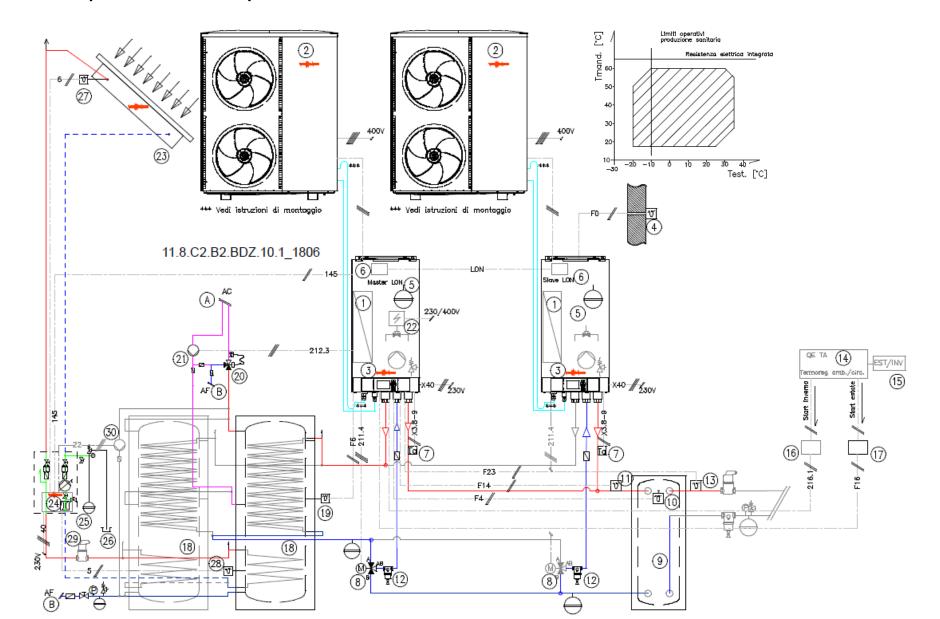
Aumento di circa 11 dB(A) rispetto ai dati di catalogo per i recettori posti sopra la bocca di lupose avevate considerato 50 dB(A) ora vi trovate 61 dB(A)!

REGOLAZIONE DIGITALE POMPE DI CALORE

Funzionamento in cascata

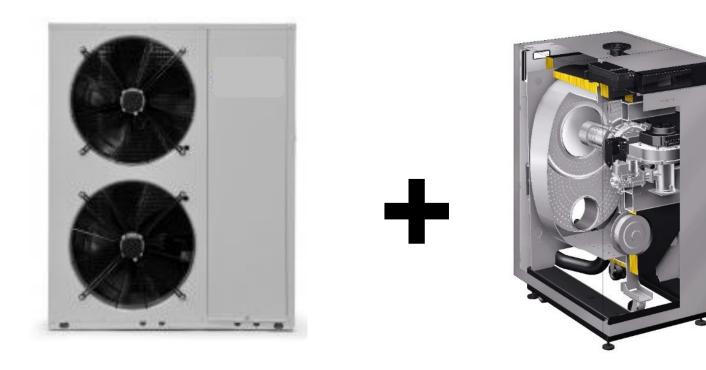
Sequenza Smart

- Pompe di calore in sequenza, gestione della modulazione inverter con ottimizzazione del COP di cascata
- Possibile combinare pompe di calore di potenza diversa per la massima flessibilità
- Possibile produzione contemporanea di:
 - Riscaldamento e ACS
 - Raffrescamento e ACS


Comunicazione LON

Le regolazioni comunicano mediante modulo/cavo BUS, si imposta una regolazione come **master**, dove si andranno ad inserire i parametri di funzionamento e che gestisce le regolazioni **slave**.

SOLUZIONI TECNICHE


Pompe di calore splittate in cascata

SISTEMI IBRIDI

Pompa di calore inverter e caldaia a condensazione

Pompa di calore aria/acqua

Generatore a condensazione

RIFORMA TARIFFE ELETTRICHE

Verso la tariffa non progressiva

«Stop all'extra-costo per i consumi efficienti, maggiore semplicità ed equità tra consumatori» AEEGSI - 2/12/2015

1° Gennaio 2016 1° Gennaio 2017 Riduzione della progressività per i servizi di rete e aumento 1° Gennaio 2020 Piena applicazione per i servizi delle quote fisse (per di rete e riduzione della contatore e potenza). Piena applicazione della tariffa progressività per gli oneri di non progressiva anche per gli sistema. Messa a disposizione dei oneri di sistema. Introduzione di più livelli di clienti dei dati relativi ai valori potenza tra cui scegliere . di potenza massima prelevata.

Introduzione per i consumatori domestici di tariffe non progressive: superamento del sistema con scaglioni di consumo introdotti in seguito alla crisi petrolifera degli anni '70.

Per approfondire: https://www.arera.it/it/schede/C/faq-riftariffe.htm (differimento al 2020 conclusione della riforma: https://www.arera.it/it/docs/18/626-18.htm)

RIFORMA TARIFFE ELETTRICHE

Stato attuale

Dal 1° gennaio 2018 l'Autorità per l'energia elettrica il gas e il sistema idrico è diventat

dal 1° Gennaio 2017

D1 - pompe di calore (residente)

D2 - residente < 3kW

D3 - residente > 3kW e non residente

3 - 4,5 - 6 kW

scaglioni di consumo

TD = Tariffa Domestica:

TD residente

TD non residente

Più taglie disponibili (step 0,5 kW)

Riduzione costo kW impegno potenza

scaglioni solo per oneri di sistema

NON esistono tariffe speciali per le pompe di calore:

- la sperimentazione tariffaria D1 pompe di calore si è conclusa, viene mantenuta una tariffa dedicata per chi aveva aderito entro il 2016
- Il secondo contatore tariffa BTA non è conveniente in nessun caso

Tariffe elettriche MARZO 2019

	TD usi domestici - monofase o trifase				
	RESI	DENTE	NON RESIDENTE		
Potenza impegnata	3 kW	6 kW	3 kW	6 kW	
Costi fissi €/anno	€	68,3	€ 19	95,3	
Costo impegno di potenza €/anno	€ 63,9	€ 127,8	€ 63,9	€ 127,8	
Costi variabili €/kWh < 1800 kWh/anno	€ 0	€ 0,128		128	
Costi variabili €/kWh > 1800 kWh/anno	€ 0,166		€ 0,166		
SIMULAZIONE costo totale del kWh *	3500kWh 21,29 €cent/kWh	8000kWh 21,70 €cent/kWh	3500kWh 25,95 €cent/kWh	8000kWh 23,45 €cent/kWh	

Condizioni economiche per i clienti del Servizio di maggior tutela 33% F1, 31% F2, 36% F3 (dati statistici ARERA)

^{*} Costo totale del kWh = incluse accisa e IVA 10%

Tariffe elettriche MARZO 2019

	BTA altri usi					
	Condominio / Azienda					
Potenza impegnata	6 kW	15 kW	30 kW			
Costi fissi €/anno	€ 171,8	€ 172,9	€ 170,6			
Costo impegno di potenza €/anno	€ 413,7	€ 1034,3	€ 1921,2			
Costi variabili €/kWh	€ 0,151	€ 0,151	€ 0,148			
SIMULAZIONE costo totale del kWh *	8.000kWh 25,77 €cent/kWh	30.000kWh 22,14 €cent/kWh	65,000kWh 20,88 €cent/kWh			

Condizioni economiche per i clienti del Servizio di maggior tutela 44% F1, 24% F2, 32% F3 (dati statistici ARERA)

^{*} Costo totale del kWh = incluse accisa e IVA 10% (condominio)

Confronto convenienza

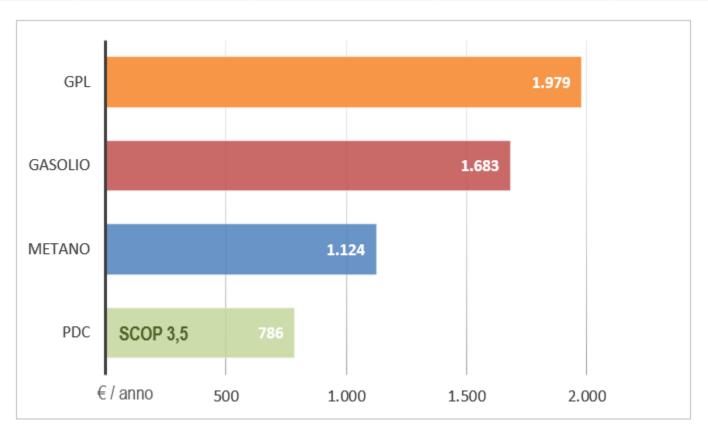
ESEMPIO						
Superficie da riscaldare	125 m ²					
Fabbisogno riscaldamento	80 kWh/m²⋅a					
Fabbisogno ACS	2500 kWh					
Energia termica richiesta	12500 kWh/anno					

IPOTESI CONSUMO ENERGETICO

Abitazione **125 m²**

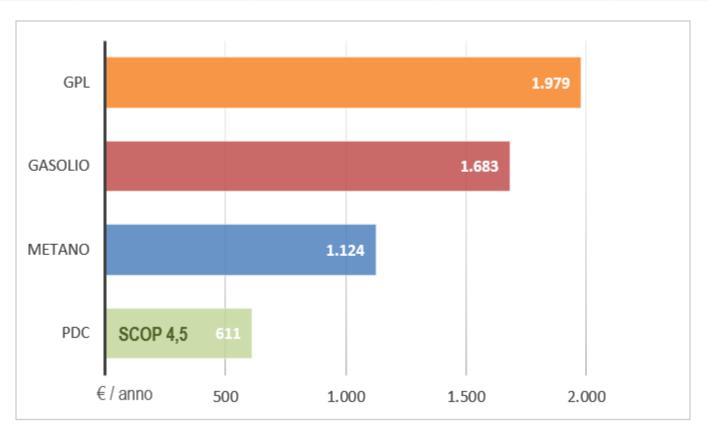
Classe energetica **D**

Dispersioni termiche 8kW

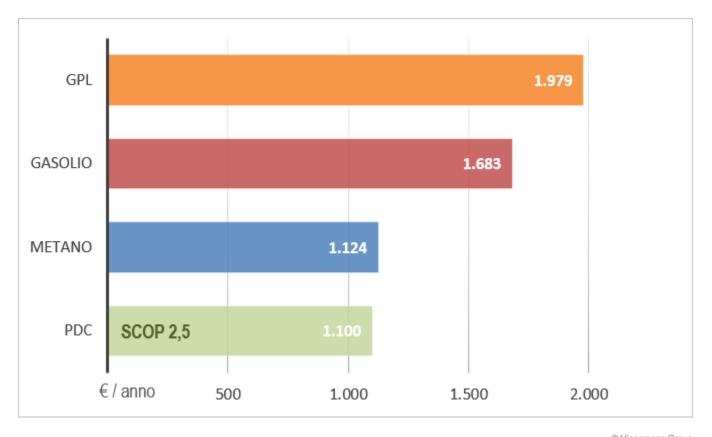

ACS per 4 persone

	POMPA DI CALORE	METANO	GASOLIO	GPL
rendimento medio stagionale	SCOP = 3,5	η = 1,0	η = 0,97	$\eta = 0.99$
contenuto energetico	-	$1 \text{ m}^3 = 9,45 \text{ kWh}$	1 I = 9,88 kWh	1 l = 7,21 kWh
consumo energetico annuo	3571 kWh	1323 m ³	1304 I	1751 l

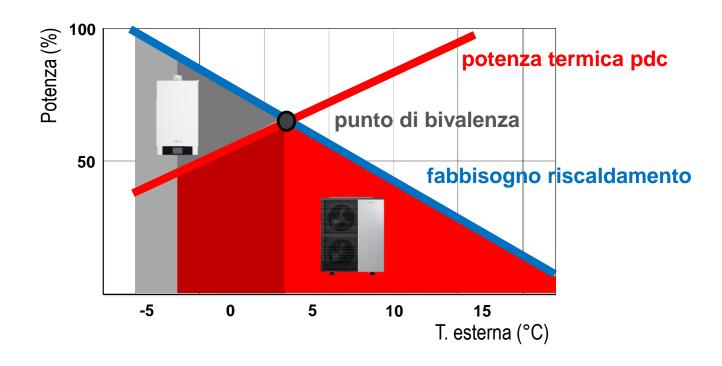
Confronto convenienza


	PDC	METANO	GASOLIO	GPL
prezzo energia	0,22 € / kWh	0,85 € / Smc	1,29 € / Ι	1,13 € / Ι
spesa annuale	786 €	1124 €	1683 €	1979 €

Importanza SCOP

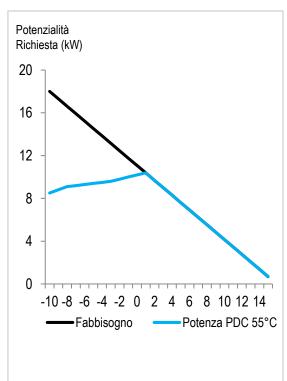

	PDC	METANO	GASOLIO	GPL
prezzo energia	0,22 € / kWh	0,85 € / Smc	1,29 € / Ι	1,13 € / Ι
spesa annuale	611 €	1124 €	1683 €	1979 €

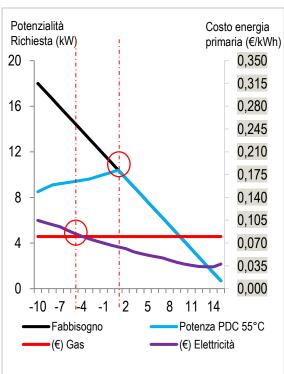
Importanza SCOP

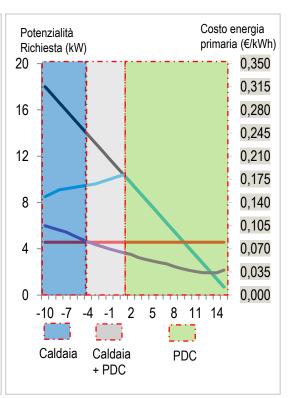

	PDC	METANO	GASOLIO	GPL
prezzo energia	0,22 € / kWh	0,85 € / Smc	1,29 € / Ι	1,13 € / Ι
spesa annuale	1100 €	1124 €	1683 €	1979 €

SISTEMI IBRIDI

Strategie di inserimento

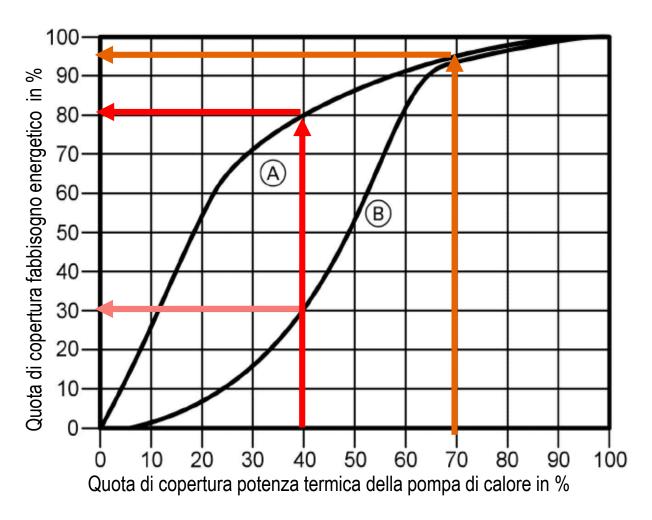



Con temperature inferiori al **punto di bivalenza** è necessario valutare una fonte energetica ausiliaria che può integrare (funz. **parallelo**) o sostituire (funz. **alternativo**) la PDC



SISTEMI IBRIDI

L'influenza dei prezzi dell'energia

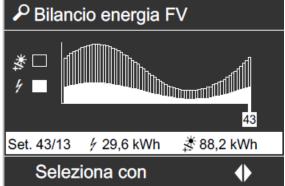


SISTEMI IBRIDI

Dimensionamento della pompa di calore

A Modo di funzionamento bivalente-parallelo

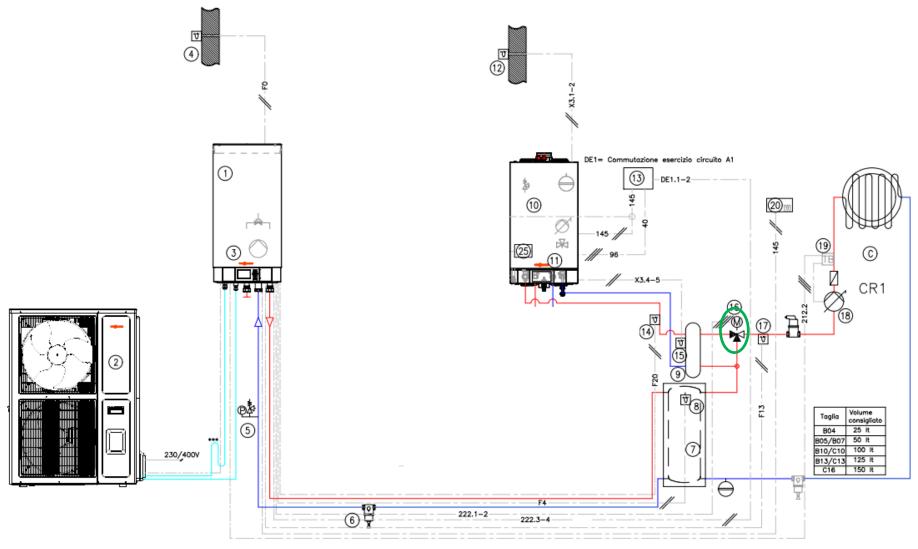
B Modo di funzionamento bivalente-alternativo


MANAGER ENERGETICO SISTEMI IBRIDI

Software HYBRID PRO CONTROL

Funzionamento **ECONOMICO**:

- Inserendo il costo del gas e dell'energia elettrica nelle diverse fasce orarie, la regolazione sceglie quale generatore conviene far lavorare in base alle condizioni di esercizio; correzione automatica costi elettrici, se presente un impianto FV
- Possibile funzione comfort su produzione sanitaria

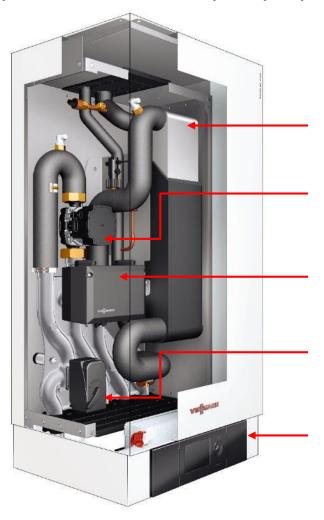


SISTEMI IBRIDI


Pompa di calore con caldaia a supporto

POMPA DI CALORE PER INTEGRAZIONE CON CALDAIA ESISTENTE

Pompa di calore aria/acqua split per sistema ibrido, reversibile


- Potenzialità da fino a 15,5 kW (230/400V)
- COP fino a 5,0 (A7/W35), EER fino a 3,7 (A35/W18)
- Ottimizzata per il integrazione a qualsiasi generatore esterno fino a 30kW
- Manager Energetico integrato Hybrid Pro Control
- Valvola miscelatrice per interfaccia con generatore ausiliario integrata nell'unità interna
- Semplicità di installazione, unità interna già equipaggiata di pompa ad alta efficienza per il circuito secondario, valvola tre vie e regolazione climatica digitale
- Sicurezza di esercizio garantita da due generatori
- Ottimizzazione autoconsumo della corrente generata da fotovoltaico
- Gestione a distanza con App tramite interfaccia Wi-Fi

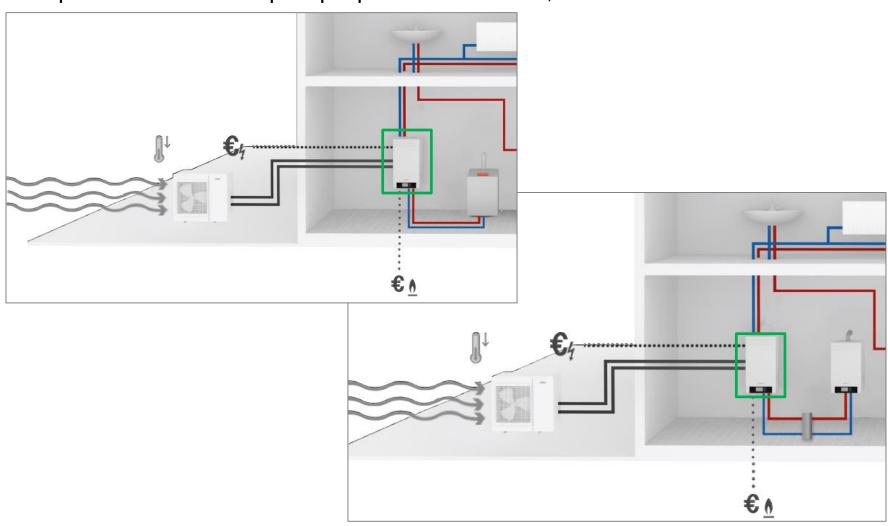
POMPA DI CALORE PER INTEGRAZIONE CON CALDAIA ESISTENTE

Pompa di calore aria/acqua split per sistema ibrido, reversibile

Condensatore

Pompa ad alta efficienza

Valvola miscelatrice per generatore ausiliario


Valvola deviatrice per ACS

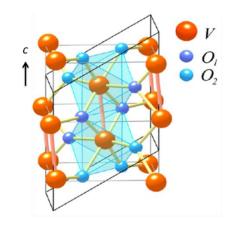
Hybrid Pro Control

POMPA DI CALORE PER INTEGRAZIONE CON CALDAIA ESISTENTE

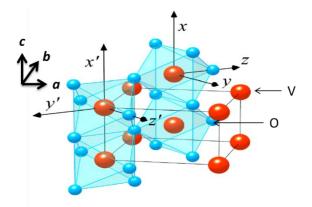
Pompa di calore aria/acqua split per sistema ibrido, reversibile

Soluzioni efficienti per edifici a basso consumo rispettosi dell'ambiente.

- Riepilogo Quadro incentivante a sostegno dell'efficienza energetica e fonti rinnovabili: Conto Termico 2.0, detrazioni fiscali Irpef e Ires
 Impiego della ventilazione meccanica controllata con recupero energetico
- ☐ Corretta scelta delle pompe di calore nei nuovi edifici a basso consumo e nelle riqualificazioni anche con sistemi ibridi
- □ Ottimizzazione eventuali integrazioni con collettori solari termici e fotovoltaici.
- ☐ Cogenerazione a livello civile: Contesto di applicazione idoneo. Principi base e parametri di riferimento cogeneratori Cenni sul dimensionamento e scelta dell'apparecchio.


.

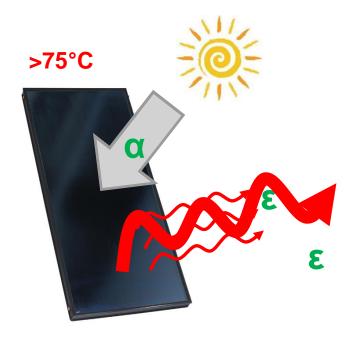
VIESMANN


INNOVAZIONE

Proprietà del diossido di vanadio

Modifica della struttura cristallina del diossido di Vanadio

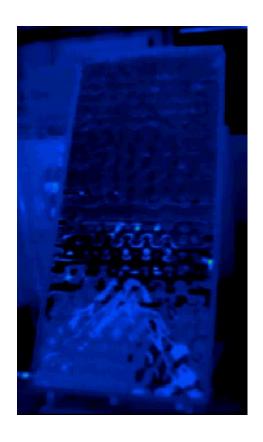
- struttura molecolare a freddo
- l'irraggiamento solare viene captato dall'assorbitore e ceduto all'impianto attraverso il glicole

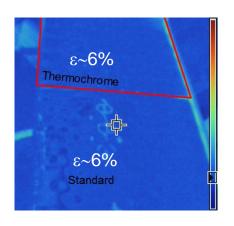


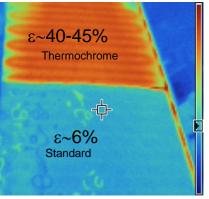
- aumentando la temperatura si modifica la struttura molecolare e il calore assorbito viene ceduto all'ambiente
- ad una temperatura di ca.145°C l'energia assorbita è pari all'energia ceduta

La superficie captante rivestita di **diossido di vanadio (VO₂)** blocca la radiazione infrarossa (ma non la luce visibile) ad elevate temperature.

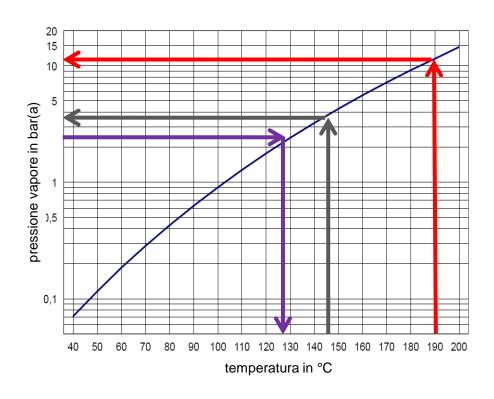
Assorbimento e Riflessione




Temperatura collettore	Stato impianto	Riflessione ε
Fino a 75°C	Carico Utenza	6%
> a 75°C	Utenza servita	da 6% a 40%


Analisi termografica (telecamera a infrarossi)

Superfici selettive (Standard e ThermProtect) applicate allo stesso meandro.


Temp. <75°C

Temp. >75°C

Pressione di vapore con collettore solare Thermochrome

L'impianto non avrà più problemi di formazione di vapore?

Con l'innalzamento della pressione dell'impianto viene evitata la formazione di vapore nel fluido termovettore

^{*} Riferito al fluido termovettore Tyfocor LS

Nuovi criteri di progettazione con Solare Termico effetto thermochrome

L'innovativo Thermochrome comporta:

- diverso approccio di dimensionamento superfici e accumuli
- diversi parametri di pressione e temperature
- nuove potenzialità e campi di impiego

Possibilità di **soddisfare quota di copertura per la Direttiva RES** (50% dal 2018) con produzione acqua calda sanitaria e **significativa integrazione riscaldamento**

Rapporto accumulo/superficie captante e collettore solare Thermochrome

- Capacità di accumulo svincolata dalla possibile formazione di vapore e persistere di elevate temperature
- Rapporto accumulo/superficie captante in funzione del solo fabbisogno dell'utenza
- Riduzione della necessità di accumulo importanti quindi riduzione degli spazi necessari e delle dispersioni per mantenimento
- ➤ Conseguente riduzione dei costi di installazione ed esercizio.

INNOVAZIONE: THERMPROTECT Riepilogo

➤ Possibilità di sfruttare **superfici captanti ben maggiori** con notevole aumento del grado di copertura solare del fabbisogno.

Non esiste sovradimensionamento

➤ Contributo significativo all'innalzamento della classe energetica del sistema impianto

➤ Possibilità di **soddisfare la copertura da RES** richiesta dal Dlgs. 28/11 (produzione sanitaria 50% e climatizzazione 50%) senza le tradizionali criticità legate a sovratemperatura o presenza di vapore

➤ Possibilità di sfruttare completamente **detrazioni fiscali e il conto termico** sia per l'elevato grado di rendimento certificato Keymark, come richiesto da quest'ultimo, sia per una maggiore superficie captante installata e incentivabile

Soluzioni efficienti per edifici a basso consumo rispettosi dell'ambiente.

- Riepilogo Quadro incentivante a sostegno dell'efficienza energetica e fonti rinnovabili: Conto Termico 2.0, detrazioni fiscali Irpef e Ires
 Impiego della ventilazione meccanica controllata con recupero energetico
 Corretta scelta delle pompe di calore nei nuovi edifici a basso consumo e nelle riqualificazioni anche con sistemi ibridi
 Ottimizzazione eventuali integrazioni con collettori solari termici e fotovoltaici.
- □ Cogenerazione a livello civile: Contesto di applicazione idoneo. Principi base e parametri di riferimento cogeneratori Cenni sul dimensionamento e scelta dell'apparecchio.

Relatore: Mauro Braga - Accademia Viessmann

SISTEMI DI COGENERAZIONE

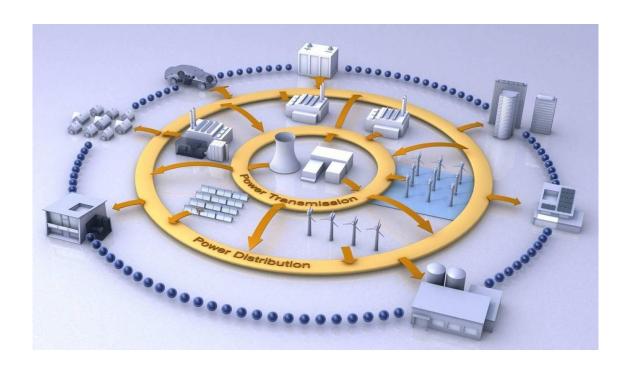
Definizione di cogenerazione

Cogenerazione è la **produzione contemporanea** di energia meccanica solitamente trasformata subito in **energia elettrica e di calore** utilizzabile per riscaldamento

DEFINIZIONI

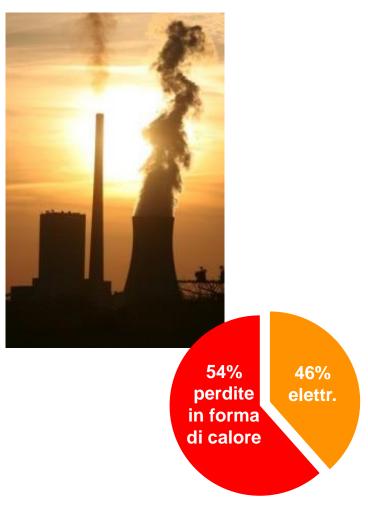
Generazione centralizzata

Gestione tradizionale della rete elettrica, con **poche grandi centrali** collegate alla rete di distribuzione ad altissima tensione



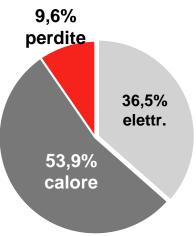
DEFINIZIONI

Generazione decentralizzata


Generazione di energia elettrica in **unità di piccole dimensioni** localizzate in più punti del territorio

EFFICIENZA DI IMPIANTI DI COGENERAZIONE

Centrale Termoelettrica


efficienza complessiva: 46%

Cogeneratore Viessmann Vitobloc

potenzialità:

- 140 kWel
- 207 kWterm

efficienza complessiva: 90,4%

LEGGE 27 DICEMBRE 2017 (Legge di stabilità 2018 art.1 comma 3) Detrazioni IRPEF per microcogenerazione prorogato al 31-12-2019

Acquisto e posa in opera in sostituzione di impianti esistenti

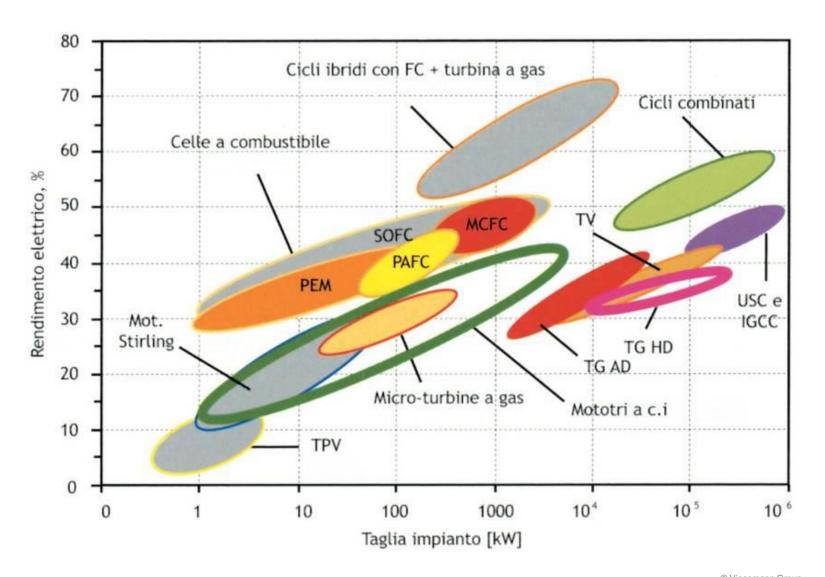
- Detrazione fino a 100.000 € in 10 anni
- Fino a 50 kW_e e ≈ 130 kW_t
- PES > 20% (Primary Energy Saving)

Applicazioni tipiche:
 piscine, RSA e strutture sanitarie, PMI, strutture ricettive,

DEFINIZIONI

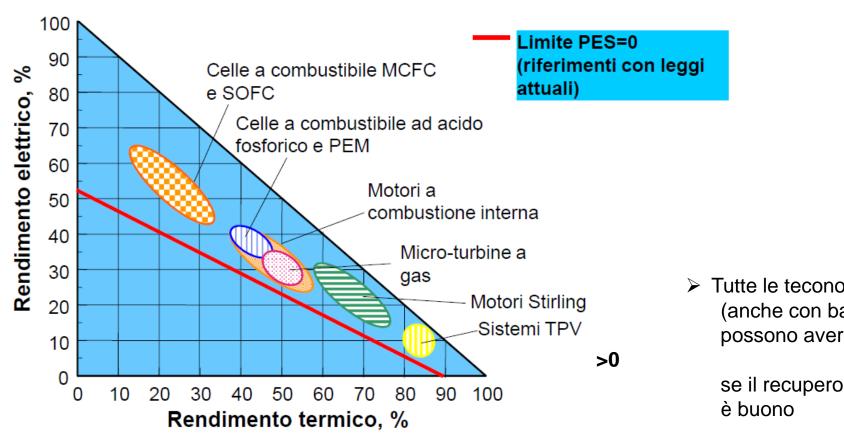
Classificazione impianti*

Microcogenerazione


- Potenza_{max} < 50 kW_e
- Piccola cogenerazione
- 50 kW ≤ Potenza_{max} < 1 Mw_e

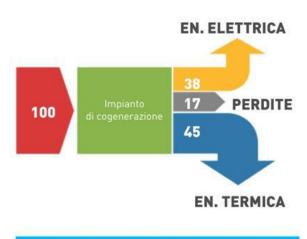
Media cogenerazione

- 1 MW ≤ Potenza_{max} < 10 Mw_e
- Grande cogenerazione
- Potenza_{max} ≥ 10 Mw_e



TECNOLOGIE APPLICATE ALLA COGENERAZIONE

EFFICIENZA E RIPARTIZIONE FLUSSI ENERGETICI


> Tutte le teconologie (anche con basso η_{el}) possono avere PES

se il recupero termico

FLUSSI ENERGETICI

PRODUZIONE IN COGENERAZIONE

ENERGIA PRIMARIA UTILIZZATA

100

PRODUZIONE SEPARATA

Consumo di energia primaria:

148

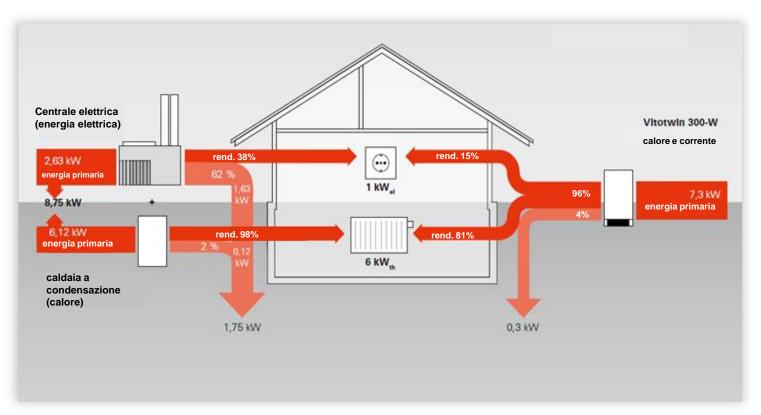
produzione separata

100

cogenerazione

In questo caso: Risparmio di energia primaria (PES):

48/148 = **32,4** %



PES: RISPARMIO DI ENERGIA PRIMARIA

Confronto caldaia a condensazione - microcogenerazione

produzione di calore ed energia elettrica separata

microcogeneratore Vitotwin 300-W

Energia introdotta Vitotwin 300-W
Energia introdotta produzione separata

= 100% (7,3 kW)

= 120% (8,75 kW)

COGENERAZIONE AD ALTO RENDIMENTO

Conforme al DM 4 agosto 2011

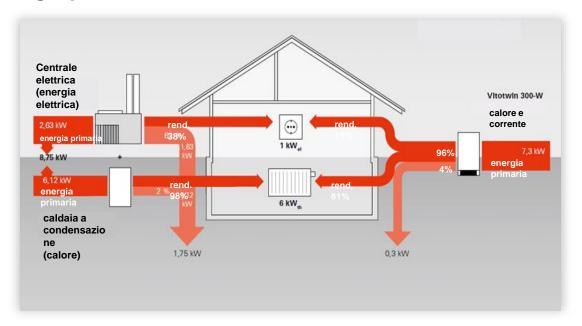
Un sistema di cogenerazione viene definito in assetto cogenerativo ad alto rendimento (CAR) quando:

- MICROCOGENERAZIONE E PICCOLA COGENERAZIONE (< 1000 kWel) PES > 0
- GRANDE COGENERAZIONE (> o uguale 1000 kWel) PES > 10 %

RENDIMENTO GLOBALE DI UNA UNITÀ DI COGENERAZIONE

dove: E, H_{CHP},

sono le energie elettrica, (al lordo degli usi di centrale) e termica utile (no energia da caldaie ausiliarie), prodotte nel periodo di riferimento


F è l'energia immessa con il combustibile nel periodo di riferimento

$$\eta_{glob} = \frac{E + H_{CHP}}{F}$$

$$PES = \left(1 - \frac{1}{\frac{\text{CHP H}_{\eta}}{\text{Ref H}_{\eta}} + \frac{\text{CHP E}_{\eta}}{\text{Ref E}_{\eta}}}\right) \times 100\%$$

PES – Primary energy saving Risparmio di energia primaria

Rendimento di riferimento (baseline) termico

Ref Hη

È il rendimento di riferimento per la produzione separata di energia termica

Varia in funzione del tipo di combustibile e di vettore termico utilizzato Sezione di tabella relativa ai combustibili gassosi:

Combustibile	Vapore/acqua calda	Utilizzo diretto gas di scarico (min. 250 °C)
Gas naturale	92	84
Gas di raffineria/idrogeno	90	82
Biogas	80	72
Gas di processo	80	72

Regolamento 12 Ottobre 2015 - (2015/2402/UE) – Rendimenti di riferimento dal 2016.

Rendimento di riferimento (baseline) elettrico

Ref Eη

Dati in funzione del combustibile (categoria gassosa) per una nuova installazione

Combustibile	Anno costruzione 2006-2011
Gas naturale	53
Gas di raffineria/idrogeno	44,2
Biogas	42,0
Gas di processo	35

Tab. 1

Correzione in funzione del luogo di installazione

Zona climatica	Temperatura media (°C)	Fattore di correzione in punti percentuale
Zona A: Valle d'Aosta, Trentino Alto-Adige, Piemonte, Friuli- Venezia Giulia, Lombardia, Veneto, Abruzzo, Emilia-Romagna, Liguria, Umbria, marche, Molise, Toscana	11,315	+0,369
Zona B: Lazio, Campania, Basilicata, Puglia, Calabria, Sardegna, Sicilia	16,043	-0,104

Tab. 2

Rendimento di riferimento (baseline) elettrico

Livello di tensione di connessione	Fattore di correzione (all'esterno del sito)	Fattore di correzione (all'interno del sito)
≥ 345kV	1	0,976
≥ 200 — < 345kV	0,972	0,963
≥ 100 — < 200kV	0,963	0,951
≥ 50 — < 100kV	0,952	0,936
≥ 12 — < 50kV	0,935	0,914
≥ 0,45 — < 12kV	0,918	0,891
< 0,45kV	0,888	0,851

Esempio di η elettrico di riferimento (baseline)

Vitobloc 200 Installato in Toscana con 90% di autoconsumo elettrico

Valore tabella 1 (gas naturale)

Emilia Romagna tabella 2

Ref Eh = $(53 + 0.369) \cdot (0.888 \cdot 0.1 + 0.851 \cdot 0.9) = 45.61 \%$

Immissione in rete (bassa tensione)

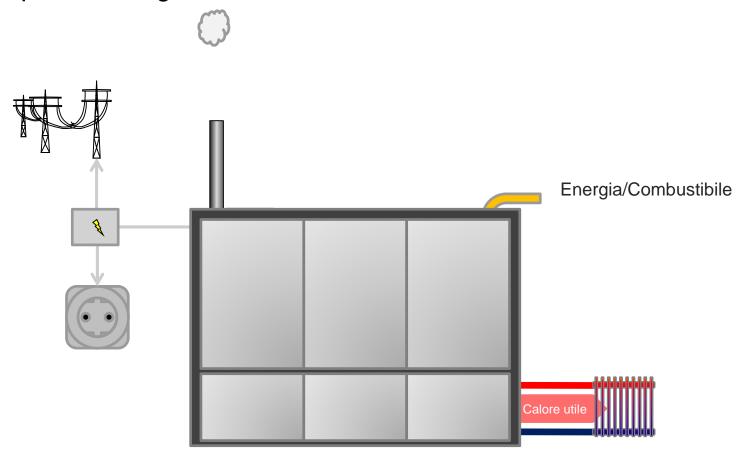
Autoconsumo (bassa tensione)

VITOBLOC 200-W 140/207 è in configurazione CAR (> PES 0)?

90% AUTOCONSUMO	VITOBLOC 200-EM	
Regione Emilia Romagna	TIPO 140/207	
Potenza elettrica [kW]	140	
Potenza termica [kW]	207	
Potenza in ingresso [kW]	384	
$\eta_{ ext{el}}$	36,5%	
η_{th}	53,9%	
η_{tot}	90,4%	
Ref elettrico	45,61%	
Ref termico	92,0%	
PES	?	

$$PES = \left(1 - \frac{1}{\frac{\text{CHP H}_{\eta}}{\text{Ref H}_{\eta}} + \frac{\text{CHP E}_{\eta}}{\text{Ref E}_{\eta}}}\right) \times 100\%$$

$$PES = \left(1 - \frac{1}{\frac{53.9}{92.0} + \frac{36.5}{45.61}}\right) \times 100\%$$


Il dispositivo VITOBLOC 200-W è in assetto cogenerativo ad alto rendimento

PRINCIPI DI BASE

Il principio della cogenerazione

POSSIBILITÀ DI APPLICAZIONE

Cosa considerare per ipotizzare un sistema di cogenerazione ?

- Rapporto prezzo specifico della corrente e prezzo specifico del gas elevato
- Rapporto produzione di calore del CHP e impianto di riscaldamento o teleriscaldamento
- Richiesta simultanea e continua di calore e corrente

UNA QUESTIONE DI COSTI ENERGETICI

Ideale: rapporto corrente elettrica / prezzo combustibile ≥ 2,5

Rapporto costi En. elettrica / Combustibile ≥ 1 1,5 2 2,5 3

Quali valori sono rilevanti?

Costo energia elettrica

Utilizzo in kWh/a

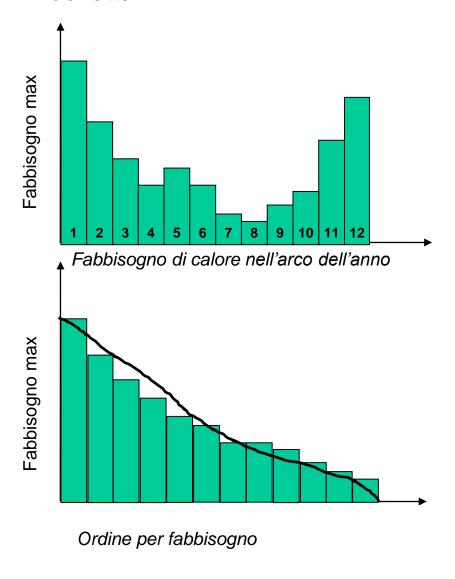
consumo annuale kWh_e

Costo combustibile

Combustibile kWh/a

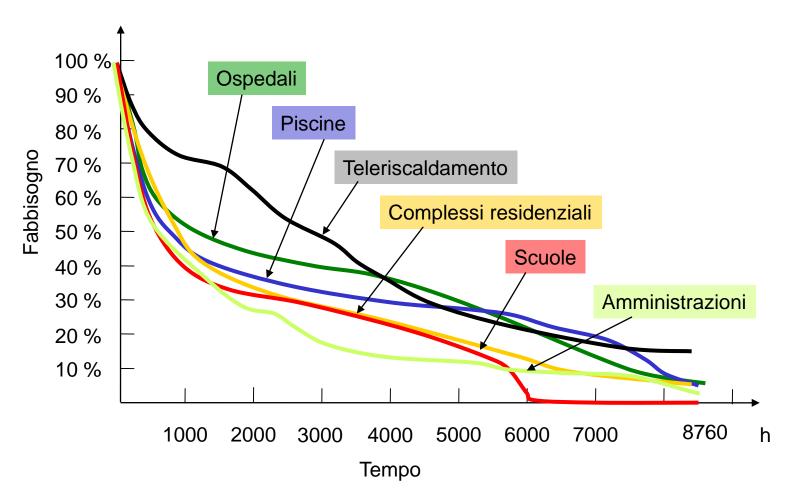
fabbisogno annuale kWh_{th}

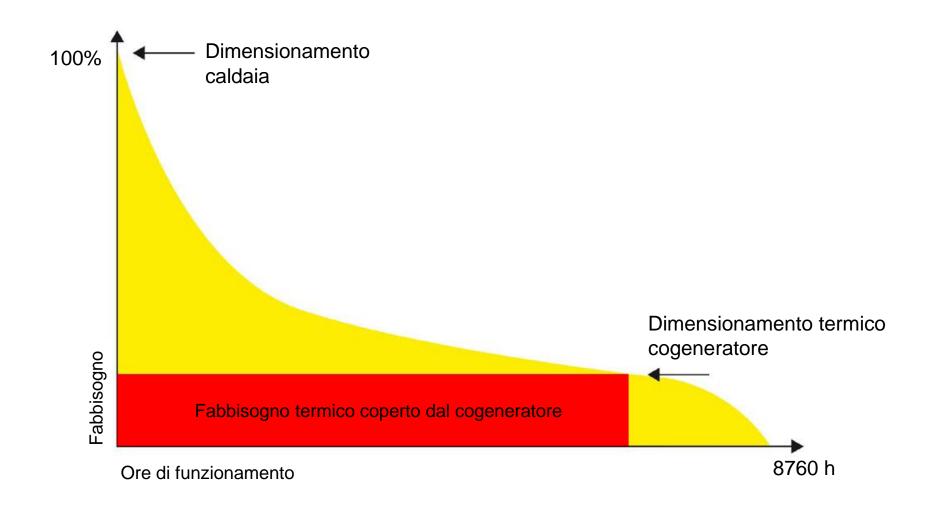
UNA QUESTIONE DI COSTI ENERGETICI


Ideale: rapporto corrente elettrica / prezzo combustibile ≥ 2,5

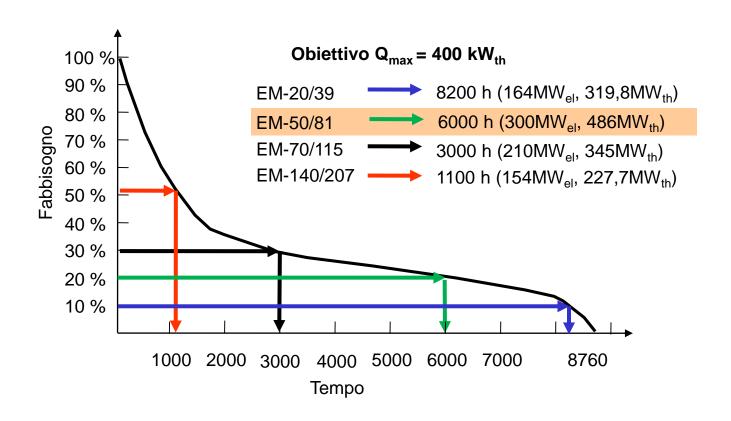
Rapporto Corrente : Gas	Economicità
1:1	Poco probabile
2:1	Possibile con sovvenzioni
3:1	Probabile
4 : 1	Molto probabile

CALCOLO DEL FABBISOGNO TERMICO


Lettura dei consumi in bolletta


CALCOLO DEL FABBISOGNO TERMICO

Profili di carico


DIMENSIONAMENTO DEL COGENERATORE

DIMENSIONAMENTO DEL COGENERATORE

Dimensionamento – affinchè l'impiego del cogeneratore sia economicamente conveniente si dovrebbero avere più di 4.500 ore di esercizio

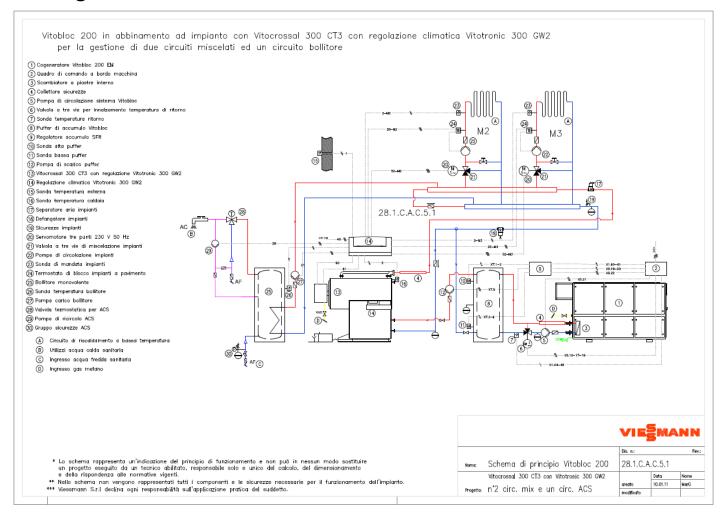
DIMENSIONAMENTO DEL COGENERATORE

La produzione di calore non dovrebbe superare il 30% del fabbisogno termico totale

- Zone residenziali max 15%
- Alberghi max 10%
- Amministrazioni max 10%
- Scuole università max 10-15%
- Industria e commercio con richiesta costante di calore 10-20% ca
- Case di riposo 20% ca
- Ospedali 25% ca
- Piscine 30% ca

Termico guida

Il criterio di attivazione e disattivazione dipende dal fabbisogno termico dell'impianto, il modulo BHKW copre il carico di base in funzione del fabbisogno momentaneo. La caldaia riceve il consenso in funzione di un fabbisogno termico crescente.


Il modulo viene regolato in base alla temperatura del ritorno dell'acqua di riscaldamento, al livello di temperatura dell'accumulo o in alternativa in base ad un segnale esterno.

PROGETTAZIONE IMPIANTI DI COGENERAZIONE

Collegamento al circuito idraulico con caldaie a condensazione

PROGETTAZIONE IMPIANTI DI COGENERAZIONE

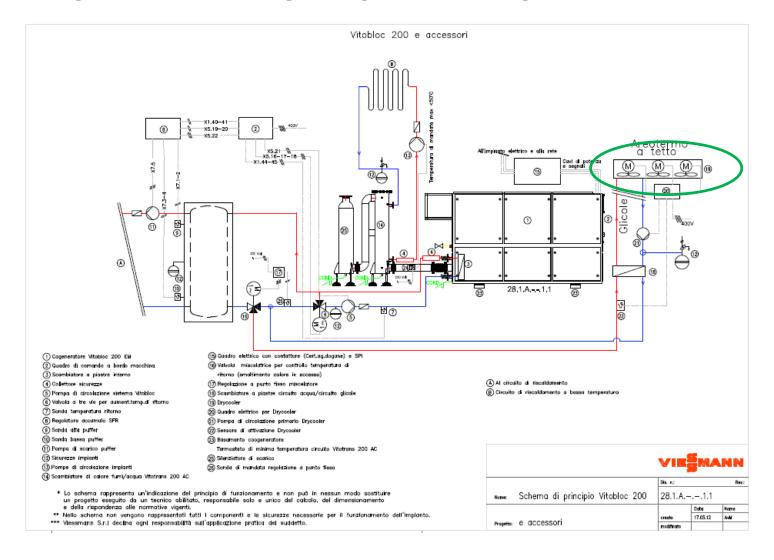
Dimensionamento accumulatore (puffer)

Se non vi sono altri criteri per il dimensionamento dell'accumulatore il volume dovrebbe assorbire il calore di **almeno un ora di esercizio** del cogeneratore a potenza termica massima

$$V_{min} = \frac{\overset{\cdot}{Q}_{BHKW} \cdot t}{c \cdot \Delta T}$$
 $V_{min} = \frac{\overset{\cdot}{Q}_{BHKW} \cdot 860}{20}$

Misure di calcolo

Vmin = volume minimo del puffer Qвнкw = potenza termica del cogeneratore in kW t = tempo di accumulo in h (t = 1 ora) c = capacità termica specifica dell'acqua (1/860 kWh/l·K) ΔT = salto termico del BHKW in K (ΔT 20 K)



Elettrico guida

E' necessario verificare che il calore prodotto dal modulo BHKW venga assorbito completamente, vanno previsti dispositivi di raffreddamento del ritorno impianto. La potenza prelevata viene trasformata come segnale di misura 0 – 20 mA (0 - ...kW) I valori di potenza e temporizzazione per l'avviamento e l'arresto sono tarabili, inoltre al superamento di un valore tarabile della temperatura del ritorno è possibile controllare una batteria di raffreddamento

Ad isola

E' necessario verificare che il calore prodotto dal modulo BHKW venga assorbito completamente, vanno previsti dispositivi di raffreddamento del ritorno impianto. Un guasto alla rete viene registrato dai dispositivi di protezione, si apre l'interruttore di accoppiamento si sganciano tutti i carichi, successivamente gli utilizzatori differenziati nei livelli di carico ammessi, possono essere inseriti. Ripristinata la rete dopo una breve fase di stabilizzazione il modulo funzionerà sincronizzato senza interruzione.

SERVICE

SERVICE

Schede di manutenzione

- Scheda di manutenzione specifica per ogni modello
- Intervalli di manutenzione di 1000 h / 1800 h/ 2000 h / 6000 h ecc, ecc secondo il modello
- Identificazione della rilevanza della manutenzione definita in:
- Manutenzione A : base
- Manutenzione B: media
- Manutenzione C: elevata con ripristino
- Identificazione della rilevanza del ripristino definito in:
- Ripristino I1 : base
- Ripristino I2 : elevato
- Ripristino I3 : base
- Ripristino I4 : revisione generale

Lavori di manutenzione: modulo C.T. Vitobloc 200 EM-140/207			800 Bh	1.800 Bh	3.600 Bh	5.400 Bh	1200 BH	40 000 Bh	12 800 Bh	14.400 Bh	16.200 Bh	18.000 Bh	19.800 Bh	21.600 Bh	23.400 Bh	25.200 Bh	28 800 Bh	30.600 Bh	32.400 Bh	34 200 Bh	36.000 Bh	30 800 84	41 400 Bh	43.200 Bh	45.000 Bh	48.800 Bh	48.600 Bh	20.480									
	Livello di ma	nuter	nzione =>	Α	Α	В	A	3	A E	3 0	Α	В	Α	В	Α	В	c	A E	A	В	Α	В	2	В	Α	В	Α	В	С								
1	Sostituzione dell'ollo			х	х	х	X Z	()	K >	(X	x	х	х	х	х	x	X)	(X	X	х	X	X)	()	X	X	х	х	X	X								
2	Cambio del filtro dell'ollo	lo			х	х	X Z	()	K >	×	x	х	х	х	х	x	x)	(X	X	х	X	x)	()	X	X	х	х	X	K								
3	Controllo dello stato della/e batteria/e e della tensione di carica / evti, rabbocco con acqua				x	x	x	κ)	K >	(x	x	x	х	x	x	x	x b	(x	×	x	x	x)	0	x	x	v	x	x	K								
	dist.				^	^	^ ′	`	1	'n	r	^	^	^	^	^	^	ľ	'n	^	^	^ ′	ľ	ſ	^	^	^	^	`								
4"	Sostituzione kit filtro aria	-1				х	X 2	()	()	X	X	Х	X	X	X	X	X)	()	X	Х	X.	X)	()	X	X	Х	X	X 2	¢								
5	Misurazione ed evti. rego valvola				X	X	X	K)	X)	X	X	x	X	X	X	X	X	(X	X	Х	X	X	Ó	X	X	X	X	X	K								
5	Controllo, evtl. rabbocco pressione dell'acqua fred				х	х	X	()	X >	(X	х	х	Х	х	х	X	X)	()	X	х	X	X)	()	X	Х	х	х	X	K								
7	Controllo ed evtl. pulizia	a dello scolo del			x	х	x z	κ ,	K >	(x	x	x	х	x	x	x	x)	()	X	x	x	x >		X	x	х	x	x	<u> </u>								
3		olio della neutralizzazione ola a farfalla e aste/cinghie				x	+	K 2	v .	c x	v	~	v	v	J	v	v ,	/ v		v		v 1	,	X		v	x	v ,	K								
_	dentate, loro eventuale lubrificazione Controllo cavi d'accensione e innesto candele				Х	Н	+	+	1		1	^	^	^	^	^	^ /	1	^	^	^	^ /	ľ		-	^	-		7								
9	Controllo cavi d'accensione e innesto candele d'accensione				Х	Х	X Z	()	X >	(X	X	Х	Х	Х	Х	X	X)	()	X	Х	Χ.	X)	()	X	X	Х	Х	X Z	K								
10	Controllo tempo accensione					Х	X 2	()	X)	(X	X	Х	Х	Х	X	X	X)	(X	X	Х	X	X)	()	X	X	Х	X	X	K								
11	Registrazione ed evti. sta di funzionamento	ed evti. stampa dei dati generali ito					X	K)	K >	x	x	x	X	x	х	X	X	(X	x	X	X	X	Ó	X	X	х	x	X	K								
12	Controllo contropressione gas di scarico in					х	X 2	()	K >	(x	x	х	х	х	х	х	x >	()	X	х	x	X)	()	X	X	х	х	x	K								
13	base al motore Controllo generale di tenuta ermetica / controllo					х	X	¢ 3	x 3	(x	X	х	х	х	v	x	X)	()	X	х	X	x)		X	X	х	x	X	K								
-	 su campione della tenuta delle viti. Verifica funzionale dei dispositivo automatic 					Â	-	1	ľ	1	r	^	^	^	^	^	^/	ľ	1	^	^		Ť	1	1	^	^	^ '	Η								
14					X	х	X	K	X	X	X	х	X	X	X	X	X	×	X	Х	X	X		X	X	х	X	X	K								
15	Apertura del rubinetto a s	netto a sfera di rabbocco				х	X	()	K >	(x	X	x	х	x	x	x	x x	(x	v	х	x	x)		X	¥	v	х	v ·	-								
16	dell'ollo / contrassegno d					X		()	4			X	X	Щ	4	4			-	X		X)		+	_	~	X	~ .	K								
_		eramento dell'intervallo di manutenzione zia generale del modulo / smaltimento del							-		-		Н		-						-		-			^			-								
17	detergenti, della tanica dell'olio ecc				Х	Х	X Z	()	()	X	X	х	Х	X	Х	X	X)	×	X	Х	X.	X)		X	Х	Х	X	X 2	K								
18	Controllo ed eventuale rabbocco della concentrazione dell'antigelo				Ш	х	1	ĸ)	×		х	Ш	X	ı	X	х	×		х		X	(Х		х		X	K								
19	Controllare la pressione di compressione				П	х	,	ĸ)	×		х	П	х	1	Х	х	×		х		X)	(Х		х		X Z	K								
20	Controllo ed eventuale pullzia dell'aspirazione dell'aria del generatore / cavo di potenza				П	х	,	ĸ)	×		х	П	x	1	х	x	×		х		x)	(х		х		x	K								
21	Sostituire le candele d'accensione				Н	х	1	ĸ)	(X		х	Н	x	+	x	x	×		х		x)	(×		х		X	K								
22	Controllo verifica "potenza dewattata"					х	,	K)	-	-	х	Н	х	+	X	x	×		х		X)	(X		х		X	K								
23		trollo della tenuta ermetica del condotto del					١,	ĸ	,	(x		x	Н	×	+	x	x	×		х	H	x >	(x		x	П	x	ĸ								
	gas e del filtro del gas Disattivazione controlio	nume	ro ald superiore	H	Н	Х	+	+	-	-	+		Н	-	+			-			H		+	H		-	Н		-								
24	alia soglia" Disattivazione controlio					_	_		_	_	_	-	- 6				E	E	E	_	E 4		5	_	5	E	£	<u>_</u>	c 6		E	E	E	e 1	_	-	_
25	di scarico*		avori di riparazi									SOO B		AND B	400 Pm	000	000 Bh	00 Bh	00 Bh	400 Bh	E 00	800 8	00 B	400 B	00 Bh	30 Bh	00 BP	00 Bh	00 00	000 Bh	800 Bh	00 Bh	400 Bh	200 B	900	9008	900 B
26	Disattivazione controlio acqua per refrigerazion	m	odulo C.T. Vito	ble	oc	20	0 E	M	-14	0/2	207	ď	d d	9 8	F. 4	1 2	800	0.8	12.600 E	4	16.2	0 0	2160	23.40	25.2	7.0X	8.80	30.600	34.26	36.00	37.80	39.60	41.40	43.2	45.00	40.0	48.6
27	Disattivazione controlic			_								+	4	-	+	+	-	-	Н	-	1	ľ		-	-		.,	63	9 67	1	Ш		1	4	1	7	*
28	Sostituire II cavo d'acce	Livello di riparazione => 22. Pulire lo scambiatore di calore per il gas							+	+	+	H	+	H	┞	11	Н	+	+	H	H	12	Н	4	Н	+	╀	13	Н	4	+	+	+	4			
_	Controllare ed eventua	tua 33° di scarico													L	Ļ	L	L	Х	Ц	_	_	L	L	Х	Ц		Ц	_	L	Х	Ц	_	_	4	4	
29	sonda Lambda	34" Sostituire le teste del cilir Controllare ed evti, sostit												1	L	1	L	L	Ц	Ц	1	1	L	L	Х	Ц		Ц	1	L	Ц	Ц	4	_	4	4	
30	Pulizia miscelatore gas	35*		ti. sostituire ii gii scambiatori di calore																					х												
31	Sostituzione acqua per mesi)	36	tl. sostituire II avviatore									+	+	+	+	+	\vdash	H	Н	+	+	+	-	x	H	4		+	+	H	H	+	+	+	+	+	
32	Controllo sflato spazio eventuale sostituzione 36 Controllare ed e 37* Controllare ed e									dIU	ie	+	+	+	+	+	+	\vdash	H	Н	+	+	+	-	Н	H	+	+	+	+	H	H	+	+	+	+	+
		catalizzatore		_							+	1	1	-	1		L	Ц	Ц	1	-	1		Х	Ц	4		4	4	Ц	Н	4	4	4	4	4	
		38*	Sostituire le bobi	ne	ďa	CCE	nsi	one	е			1				ı		ı					1		Х					4		ı					

^{*} La condizione viene verificata e sostituito se necessario

SERVICE

Intervallo di manutenzione cogeneratori (in ore)	Km equivalenti per un'auto
10 ore	= 600 km
100 ore	= 6.000 km
1.000 ore per motori Turbo	= 60.000 km
1.800 ore per motori aspirati	= 108.000 km
6.000 ore per i motori Toyota	= 360.000 km

Revisione generale (= I4) dei cogeneratori circa 50.000 Ore = 3.000.000 km

CONCLUSIONI

- Gli obiettivi prioritari che ci guidano sono la riduzione delle emissioni di CO₂ e la riduzione dell'impiego di energia primaria ovviamente senza rinunciare a comfort, salubrità e benessere
- Sempre più occorre pensare a «Sistemi impianto» o ancora meglio «Sistema Edificio-Impianto» che sfruttano le nuove tecnologie in modo ottimizzato dove l'edificio è un componente primario dell'impianto tenologico
- Occorre prevedere l'utilizzo di regolazioni in grado di gestire il «Sistema impianto» che integrano tra loro fonti energetiche e tecnologie in modo razionale e sinergico
- L'interattività e la supervione della soluzione grazie alla connettività permette una conduzione più attenta e mirata da parte dell'utente, che sentendosi coinvolto in modo attivo sarà più partecipe e sensibilizzato ad una gestione oculata e rispettosa dell'ambiente

....grazie per l'attenzione

Coffee Break

15 minuti

